Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of accelerating beams based on caustic method

Wen Yuan-Hui Chen Yu-Jie Yu Si-Yuan

Citation:

Design of accelerating beams based on caustic method

Wen Yuan-Hui, Chen Yu-Jie, Yu Si-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Self-accelerating beam is a kind of light beam capable of self-bending in free space without any external potential, of which a typical one is the well-known Airy beam. Such a beam has gained great attention for its extraordinary properties, including nondiffracting, self-accelerating and self-healing, which may have versatile applications in the delivery and guiding of energy, information and objects using light, such as particle manipulation, micro-machining, optical routing, super-resolution imaging, etc. However, since Airy beam can only propagate along parabolic trajectory, which reduces the flexibility in practical applications, thus how to design accelerating beams propagating along arbitrary trajectory is still a crucial problem in this area. One scheme is to keep on finding other analytical solutions of the wave equation besides Airy beam, such as semi-Bessel accelerating beams, Mathius beams, and Weber beams, moving along circular, elliptical, or parabolic trajectories, but it becomes increasingly difficult to find out any more solutions. A more effective solution to this problem is based on the caustic method, which associates the predesigned trajectory with an optical caustics and then obtains the necessary initial field distribution by performing a light-ray analysis of the caustics. This method has been implemented in real space and Fourier space based on Fresnel diffraction integral and angular-spectrum integral, respectively. It has been found recently that they can be unified by constructing Wigner distribution function in phase space. Based on the caustic method, accelerating beams were constructed to propagate along arbitrary convex trajectories in two-dimensional space at first. With continuous development of this method, the types of accelerating beams available have been extending from convex trajectories to nonconvex trajectories, from two-dimensional trajectories to three-dimensional trajectories, and from one main lobe to multiple main lobes, which opens up more possibilities for emerging applications based on accelerating beams. In future, previous researches and applications based on Airy beams will certainly be generalized to all these new types of accelerating beams, and owing to the great flexibility in designing accelerating beams, more application scenarios may emerge in this process with huge development potential. Thus in this paper, we review the principle and progress of the caustic method in designing accelerating beams.
      Corresponding author: Chen Yu-Jie, chenyj69@mail.sysu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB340000), the National Natural Science Foundation of China (Grant Nos. 11690031, 61323001, 61490715, 51403244), the Science and Technology Program of Guangzhou, China (Grant No. 2018), and Sun Yat-sen University Fundamental Research Funds for the Central Universities of China (Grant Nos. 17lgzd06, 16lgjc16, 15lgpy04, 15lgzs095, 15lgjc25).
    [1]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [2]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [3]

    Zhao J, Chremmos I D, Song D, Christodoulides D N, Efremidis N K, Chen Z 2015 Sci. Rep. 5 12086

    [4]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [5]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photon. 4 103

    [6]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [7]

    Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M 2012 Appl. Phys. Lett. 101 071110

    [8]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [9]

    Jia S, Vaughan J C, Zhuang X 2014 Nat. Photon. 8 302

    [10]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Llad C, Ferrier D E K, Čizr T, Gunn-Moore F J, Dholakia K 2014 Nat. Method 11 541

    [11]

    Clerici M, Hu Y, Lassonde P, Milin C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Lgar F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [12]

    Minovich A, Klein A E, Janunts N, Pertsch T, Neshev D N, Kivshar Y S 2011 Phys. Rev. Lett. 107 116802

    [13]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [14]

    Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z, Zhang X 2011 Opt. Lett. 36 3191

    [15]

    Epstein I, Arie A 2014 Phys. Rev. Lett. 112 023903

    [16]

    Voloch-Bloch N, Lereah Y, Lilach Y, Gover A, Arie A 2013 Nature 494 331

    [17]

    Efremidis N K, Paltoglou V, von Klizing W 2013 Phys. Rev. A 87 043637

    [18]

    Zhang P, Li T, Zhu J, Zhu X, Yang S, Wang Y, Yin X, Zhang, X 2014 Nat. Commun. 5 4316

    [19]

    Zhao S, Hu Y, Lu J, Qiu X, Cheng J, Burnett I 2014 Sci. Rep. 4 6628

    [20]

    Fu S, Tsur Y, Zhou J, Shemer L, Arie A 2015 Phys. Rev. Lett. 115 034501

    [21]

    Chen Z G, Xu J J, Hu Y, Song D H, Zhang Z, Zhao J Y, Liang Y 2016 Acta Opt. Sin. 36 1026009 (in Chinese) [陈志刚, 许京军, 胡毅, 宋道红, 张泽, 赵娟莹, 梁毅 2016 光学学报 36 1026009]

    [22]

    Wen W, Cai Y J 2017 Laser Optoelectr. Prog. 54 020002 (in Chinese) [文伟, 蔡阳健 2017 激光与光电子学进展 54 020002]

    [23]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [24]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [25]

    Aleahmad P, Miri M, Mills M S, Kaminer I, Segev M, Christodoulides D N 2012 Phys. Rev. Lett. 109 203902

    [26]

    Kravtsov Y A, Orlov Y I 1983 Sov. Phys. Usp. 26 1038

    [27]

    Vaveliuk P, Lencina A, Rodrigo J A, Matos O M 2015 Phys. Rev. A 92 033850

    [28]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [29]

    Froehly L, Courvoisier F, Mathis A, Jacquot M, Furfaro L, Giust R, Lacourt P A, Dudley J M 2011 Opt. Express 19 16455

    [30]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2016 Phys. Rev. A 94 013829

    [31]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2017 Phys. Rev. A 95 023825

    [32]

    Wen Y, Chen Y, Zhang Y, Yu S 2017 Chin. Opt. Lett. 15 030011

    [33]

    Wong R 2001 Asymptotic Approximations of Integrals. (Society for Industrial and Applied Mathematics) p76

    [34]

    Li Z, Cheng H, Liu Z, Chen S, Tan J 2016 Adv. Opt. Mater. 4 1230

    [35]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [36]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [37]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X C 2015 Sci. Rep. 5 10529

    [38]

    Dolev I, Epstein I, Arie A 2012 Phys. Rev. Lett. 109 203903

    [39]

    Jarutis V, Matijoius A, Trapani P D, Piskarskas A 2009 Opt. Lett. 34 2129

    [40]

    Zhao J, Zhang P, Deng D, Liu J, Gao Y, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z 2013 Opt. Lett. 38 498

  • [1]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [2]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nat. Photon. 2 675

    [3]

    Zhao J, Chremmos I D, Song D, Christodoulides D N, Efremidis N K, Chen Z 2015 Sci. Rep. 5 12086

    [4]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [5]

    Chong A, Renninger W H, Christodoulides D N, Wise F W 2010 Nat. Photon. 4 103

    [6]

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S 2010 Phys. Rev. Lett. 105 253901

    [7]

    Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A, Dudley J M 2012 Appl. Phys. Lett. 101 071110

    [8]

    Rose P, Diebel F, Boguslawski M, Denz C 2013 Appl. Phys. Lett. 102 101101

    [9]

    Jia S, Vaughan J C, Zhuang X 2014 Nat. Photon. 8 302

    [10]

    Vettenburg T, Dalgarno H I C, Nylk J, Coll-Llad C, Ferrier D E K, Čizr T, Gunn-Moore F J, Dholakia K 2014 Nat. Method 11 541

    [11]

    Clerici M, Hu Y, Lassonde P, Milin C, Couairon A, Christodoulides D N, Chen Z, Razzari L, Vidal F, Lgar F, Faccio D, Morandotti R 2015 Sci. Adv. 1 e1400111

    [12]

    Minovich A, Klein A E, Janunts N, Pertsch T, Neshev D N, Kivshar Y S 2011 Phys. Rev. Lett. 107 116802

    [13]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804

    [14]

    Zhang P, Wang S, Liu Y, Yin X, Lu C, Chen Z, Zhang X 2011 Opt. Lett. 36 3191

    [15]

    Epstein I, Arie A 2014 Phys. Rev. Lett. 112 023903

    [16]

    Voloch-Bloch N, Lereah Y, Lilach Y, Gover A, Arie A 2013 Nature 494 331

    [17]

    Efremidis N K, Paltoglou V, von Klizing W 2013 Phys. Rev. A 87 043637

    [18]

    Zhang P, Li T, Zhu J, Zhu X, Yang S, Wang Y, Yin X, Zhang, X 2014 Nat. Commun. 5 4316

    [19]

    Zhao S, Hu Y, Lu J, Qiu X, Cheng J, Burnett I 2014 Sci. Rep. 4 6628

    [20]

    Fu S, Tsur Y, Zhou J, Shemer L, Arie A 2015 Phys. Rev. Lett. 115 034501

    [21]

    Chen Z G, Xu J J, Hu Y, Song D H, Zhang Z, Zhao J Y, Liang Y 2016 Acta Opt. Sin. 36 1026009 (in Chinese) [陈志刚, 许京军, 胡毅, 宋道红, 张泽, 赵娟莹, 梁毅 2016 光学学报 36 1026009]

    [22]

    Wen W, Cai Y J 2017 Laser Optoelectr. Prog. 54 020002 (in Chinese) [文伟, 蔡阳健 2017 激光与光电子学进展 54 020002]

    [23]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [24]

    Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [25]

    Aleahmad P, Miri M, Mills M S, Kaminer I, Segev M, Christodoulides D N 2012 Phys. Rev. Lett. 109 203902

    [26]

    Kravtsov Y A, Orlov Y I 1983 Sov. Phys. Usp. 26 1038

    [27]

    Vaveliuk P, Lencina A, Rodrigo J A, Matos O M 2015 Phys. Rev. A 92 033850

    [28]

    Greenfield E, Segev M, Walasik W, Raz O 2011 Phys. Rev. Lett. 106 213902

    [29]

    Froehly L, Courvoisier F, Mathis A, Jacquot M, Furfaro L, Giust R, Lacourt P A, Dudley J M 2011 Opt. Express 19 16455

    [30]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2016 Phys. Rev. A 94 013829

    [31]

    Wen Y, Chen Y, Zhang Y, Chen H, Yu S 2017 Phys. Rev. A 95 023825

    [32]

    Wen Y, Chen Y, Zhang Y, Yu S 2017 Chin. Opt. Lett. 15 030011

    [33]

    Wong R 2001 Asymptotic Approximations of Integrals. (Society for Industrial and Applied Mathematics) p76

    [34]

    Li Z, Cheng H, Liu Z, Chen S, Tan J 2016 Adv. Opt. Mater. 4 1230

    [35]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C, Hu C, Gao P, Huang C, Ren H, Li X, Qin F, Yang J, Gu M, Hong M, Luo X 2015 Sci. Adv. 1 e1500396

    [36]

    Li X, Pu M, Zhao Z, Ma X, Jin J, Wang Y, Gao P, Luo X 2016 Sci. Rep. 6 20524

    [37]

    Lin J, Wang Q, Yuan G, Du L, Kou S S, Yuan X C 2015 Sci. Rep. 5 10529

    [38]

    Dolev I, Epstein I, Arie A 2012 Phys. Rev. Lett. 109 203903

    [39]

    Jarutis V, Matijoius A, Trapani P D, Piskarskas A 2009 Opt. Lett. 34 2129

    [40]

    Zhao J, Zhang P, Deng D, Liu J, Gao Y, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z 2013 Opt. Lett. 38 498

  • [1] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [2] Luo Xiao-Li, Gao Jian-Hua. Non-Abelian chiral kinetic equations in the Cartan-Weyl basis. Acta Physica Sinica, 2023, 72(11): 112503. doi: 10.7498/aps.72.20222471
    [3] Piao Sheng-Chun, Li Zi-Yang, Wang Xiao-Han, Zhang Ming-Hui. Lower turning point convegence zone in deep water with an incomplete channel. Acta Physica Sinica, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [4] Chen Shan-Shan, Liu Xing, Liu Zhi-Guang, Li Jia-Fang. Focused ion beam based nano-kirigami/origami for three-dimensional micro/nanomanufacturing and photonic applications. Acta Physica Sinica, 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [5] Wei Xiang, Wu Zhi-Zheng, Cao Zhan, Wang Yuan-Yuan, Dziki Mbemba. Shaping self-accelerating Bessel-like optical beams along arbitrary trajectories by magnetic fluid deformable mirror. Acta Physica Sinica, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [6] Lü Hao, You Kai, Lan Yan-Yan, Gao Dong, Zhao Qiu-Ling, Wang Xia. Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference. Acta Physica Sinica, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [7] Guo Li, Han Shen-Sheng, Chen Jing. Study of above-threshold ionization by Wigner-distribution-like function method. Acta Physica Sinica, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [8] Chen Zhi, Xu Liang, Chen Rong-Chang, Du Guo-Hao, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Focusing performance of hard X-ray single Kinoform lens. Acta Physica Sinica, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [9] Zhao Juan-Ying, Deng Dong-Mei, Zhang Ze, Liu Jing-Jiao, Jiang Dong-Sheng. Theoretical and experimental study on self-accelerating Bessel-like Hermite-Gaussian beams. Acta Physica Sinica, 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [10] Zhu Yan-Ju, Jiang Yue-Song, Zhang Chong-Hui, Xin Can-Wei. Fast computation of electromagnetic scattering characteristics from conducting targets using modified-physical optics and graphical electromagnetic computing. Acta Physica Sinica, 2014, 63(16): 164202. doi: 10.7498/aps.63.164202
    [11] Yue Yang-Yang, Xiao Han, Wang Zi-Xiao, Wu Min. Research on diffraction and self-acceleration of Airy beam. Acta Physica Sinica, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [12] Chang Qiang, Yang Yan-Fang, He Ying, Liu Hai-Gang, Liu Jian. Study of the focusing features of spatial amplitude and phase modulated radially polarized vortex beams in a 4pi focusing system. Acta Physica Sinica, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [13] Chen Xiao-Jun, Zhang Zi-Li, Ge Hui-Liang. Fabricating three-dimensional periodic micro-structure with planar defects via a single exposure. Acta Physica Sinica, 2012, 61(17): 174211. doi: 10.7498/aps.61.174211
    [14] Zhang Qian-An, Wu Feng-Tie, Zheng Wei-Tao. Eliminating the center spot of bottle beam generated by axicon-lens system. Acta Physica Sinica, 2012, 61(3): 034205. doi: 10.7498/aps.61.034205
    [15] Wang Xia, Wang Zi-Xia, Lü Hao, Zhao Qiu-Ling. Short-cut transformation from one-dimensional to three-dimensional interference pattern by holographic simulation. Acta Physica Sinica, 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [16] Li Yang-Yue, Chen Zi-Yang, Liu Hui, Pu Ji-Xiong. Generation and interference of vortex beams. Acta Physica Sinica, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [17] Wu Feng-Tie, Jiang Xin-Guang, Liu Bin, Qiu Zhen-Xing. Geometric optics analysis on self-reconstruction of the nondiffracting beam generated from an axicon. Acta Physica Sinica, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [18] Han Yong, Wang Ti-Jian, Rao Rui-Zhong, Wang Ying-Jian. Progress in the study of physic-optics characteristics of atmospheric aerosols. Acta Physica Sinica, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [19] WANG XI-QING, Lü BAI-DA. PROPAGATION OF QBG BEAMS THROUGH AN APERTUREDABCD OPTICAL SYSTEM. Acta Physica Sinica, 2001, 50(4): 682-685. doi: 10.7498/aps.50.682
    [20] HUANG JING, LIANG RUI-SHENG, SITU DA, ZHANG KUN-MING, TANG ZHI-LIE. THE OPTICAL TRANSFER FUNCTION OF CONFOCAL SCANNING LASER MICROSCOPY WITH GAUSS SOURCE. Acta Physica Sinica, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
Metrics
  • Abstract views:  7375
  • PDF Downloads:  457
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2017
  • Accepted Date:  17 July 2017
  • Published Online:  05 July 2017

/

返回文章
返回