Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling and experimental verification of surface dynamics of magnetic fluid deformable mirror

Zhang Zhu Wu Zhi-Zheng Jiang Xin-Xiang Wang Yuan-Yuan Zhu Jin-Li Li Feng

Citation:

Modeling and experimental verification of surface dynamics of magnetic fluid deformable mirror

Zhang Zhu, Wu Zhi-Zheng, Jiang Xin-Xiang, Wang Yuan-Yuan, Zhu Jin-Li, Li Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As a key component of the adaptive optics (AO) system,wavefront corrector plays a crucial role in determining the performance of the AO system.At present,the typical wavefront correctors,including solid deformable mirrors and liquid crystal spatial light modulators,have the common drawbacks of high cost of per actuator channel,and the relatively low stroke deflection (normally less than 50 m) due to the limitation of material and manufacturing technology.In the face of the growing demand for deformable mirrors with large stroke,low power dissipation and low cost,the magnetic fluid based deformable mirror (MFDM) is proposed in this paper.The magnetic fluid has the characteristic of the fluidity of liquid and can be magnetized by an external magnetic field.Therefore,the surface deflection of the MFDM can be controlled by the surrounding magnetic field generated by an array of electromagnetic coils located underneath the magnetic fluid layer.Compared with the conventional deformable mirrors,the MFDM has the advantages of a continuous and smooth mirror surface,large shape deformation,low manufacture cost,and easy extension.The surface dynamics model of MFDM with a circular geometry has been studied previously in the literature.In the present paper, considering the possible applications in the wavefront control of rectangular laser beams,we study the MFDM with a rectangular array of actuators. Firstly,based on the governing equations of the magnetic fluid,derived from the principles of conservation of fluid mass and magnetic field,the dynamics model of surface deflection of the rectangular MFDM is analyzed in Cartesian coordinates under the boundary condition of magnetic field and the kinematic conditions of magnetic fluid.The analytical solutions of the surface movement of the mirror subject to the applied currents in the electromagnetic coils are obtained by properly separating the variables with truncated model numbers.Secondly,based on the derived analytical model, the optimal design procedure for the structure and parameters of the MFDM to obtain the required performance,i.e. the largest stroke and inter-actuator stroke of the mirror,as well as the coupling coefficient of the influence function, is presented.The resulting surface response performance of the designed MFDM is validated by the co-simulation in MATLAB,COMSOL Multiphysics and Tracepro software.Finally,a prototype of square MFDM consisting of the square array of miniature electromagnetic coils,a Maxwell coil and the magnetic fluid filled in a rectangular container is fabricated for experimental evaluation.The experimental results of the surface response of the mirror subject to two adjacent active coils are first presented to validate the stroke performance and linear characteristics of the MFDM. A parabolic surface shape is then further produced in the AO setup system with the MFDM subject to the array of coils driven by the currents calculated from the analytical model.The experimental results verify the accuracy of the established dynamics model and show that the proposed MFDM can be used to effectively control the wavefront of laser beam.
      Corresponding author: Wu Zhi-Zheng, zhizhengwu@shu.edu.cn;lifenggold@163.com ; Li Feng, zhizhengwu@shu.edu.cn;lifenggold@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675321), the Shanghai Municipal Natural Science Foundation, China (Grant No.15ZR1415800), and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No.14ZZ092).
    [1]

    Rosensweig R E 1985 Ferrohydrodynamics (Cambridge: Cambridge University Press) pp1-64

    [2]

    Wang A R, Xu G, Shu C J 2010 Magnetic Fluid and Applications (Chengdu: Southwest Jiaotong University Press) pp1-20 (in Chinese) [王安蓉, 许刚, 舒纯军 2010 磁性液体及其应用 (成都: 西南交通大学出版社) 第120页]

    [3]

    Li D C 2010 Theory and Applications of Magnetic Fluid Seal (Beijing: Science Press) pp38-68 (in Chinese) [李德才 2010 磁性液体密封理论及应用 (北京: 科学出版社) 第3868页]

    [4]

    Papell S S 1965 US Patent 3 215 572

    [5]

    Yuichi M, Hiroshi S, Hayato Y, Hidenori S 2015 Procedia CIRP 33 581

    [6]

    Rajesh C S, Parsania M M 2013 Am. J. Math. Stat. 3 179

    [7]

    Yao J, Chang J J, Li D C, Yang X L 2016 J. Magn. Magn. Mater. 402 28

    [8]

    Mitamura Y, Yano T, Nakamura W, Okamoto E 2013 Bio-Med. Mater. Eng. 23 63

    [9]

    Dave V, Virpura H A, Patel R J 2015 AIP Conf. Proc. 1665 050139

    [10]

    Nguyen N T, Beyzavi A, Ng K M, Huang X Y 2007 Microfluid Nanofluid 3 571

    [11]

    Liu J, Tan S H, Yap Y F, Ng M Y, Nguyen N T 2011 Microfluid Nanofluid 11 177

    [12]

    Brousseau D, Borra E F, Hubert J R, Parent J 2006 Opt. Express 14 11486

    [13]

    Brousseau D, Borra E F, Thibault S 2007 Opt. Express 15 18190

    [14]

    Borra E F, Brousseau D, Cliche M, Parent J 2008 Mon. Not. R. Astron. Soc. 391 1925

    [15]

    Iqbal A, Amara F B 2008 Int. J. Optomechatroni. 2 126

    [16]

    Ritcey A M, Borra E 2010 ChemPhysChem 11 981

    [17]

    Lemmer A J, Griffiths I M, Groff T D, Rousing A W, Kasdin N J 2016 Proc. SPIE 9912 99122K

    [18]

    Dery J P, Brousseau D, Rochette M, Borra E F, Ritcey A M 2016 J. Appl. Polym. Sci. 134 44542

    [19]

    Wu Z Z, Kong X H, Wu J Q, Liu M, Xie S R 2016 Chin. J. Sci. Instrum. 37 1509 (in Chinese) [吴智政, 孔祥会, 吴君秋, 刘梅, 谢少荣 2016 仪器仪表学报 37 1509]

    [20]

    Wu Z Z, Kong X H, Zhang Z, Wu J Q, Wang T, Liu M 2017 Micromachines 8 72

    [21]

    Bayanna A R, Louis R E, Chatterjee A, Mathew S K, Venkatakrishnan P 2015 Appl. Opt. 54 1727

    [22]

    Bastaits R, Alaluf D, Horodinca M, Romanescu I, Burda I, Martic G, Rodrigues G, Preumont A 2014 Appl. Opt. 53 6635

    [23]

    Du R Q, Zhang X J 2011 Opto-Electron. Eng. 38 30

    [24]

    Calero V, Garca-Martnez P, Albero J 2013 Opt. Lett. 38 4663

    [25]

    Yao K, Wang J, Liu X, Liu W 2014 Opt. Express 22 17216

    [26]

    Peng F, Lee Y, Luo Z, Wu S 2015 Opt. Lett. 40 5097

    [27]

    Ghaffaria A, Hashemabadi S H, Bazmib M 2015 Colloid. Surface A 481 186

    [28]

    Shi D, Bi Q, Zhou R 2014 Numer. Heat Tr. A: Appl. 66 144

    [29]

    Akhtar S N, Sharma S, Dayal G, Ramakrishna S A, Ramkumar J 2015 J. Micromech. Microeng. 25 065001

    [30]

    Jiao L, Cai J, Ma H H, Li G X, Shen Z W, Tang Z P 2014 Appl. Surf. Sci. 301 481

    [31]

    Marmo J, Injeyan H, Komine H, McNaught S, Machan J, Sollee J 2009 Proc. SPIE 7195 719507A

    [32]

    Wu Z Z, Iqbal A, Ben Amara F 2013 Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems (New York: Springer) pp99-115

    [33]

    Caprari R S 1995 Meas. Sci. Technol. 6 593

    [34]

    Wu J Q, Wu Z Z, Kong X H, Zhang Z, Liu M 2017 Optoelectron. Lett. 13 90

    [35]

    Lu F, He Z W 2012 Comput. Simul. 29 1006 (in Chinese) [卢飞, 何忠武 2012 计算机仿真 29 1006]

  • [1]

    Rosensweig R E 1985 Ferrohydrodynamics (Cambridge: Cambridge University Press) pp1-64

    [2]

    Wang A R, Xu G, Shu C J 2010 Magnetic Fluid and Applications (Chengdu: Southwest Jiaotong University Press) pp1-20 (in Chinese) [王安蓉, 许刚, 舒纯军 2010 磁性液体及其应用 (成都: 西南交通大学出版社) 第120页]

    [3]

    Li D C 2010 Theory and Applications of Magnetic Fluid Seal (Beijing: Science Press) pp38-68 (in Chinese) [李德才 2010 磁性液体密封理论及应用 (北京: 科学出版社) 第3868页]

    [4]

    Papell S S 1965 US Patent 3 215 572

    [5]

    Yuichi M, Hiroshi S, Hayato Y, Hidenori S 2015 Procedia CIRP 33 581

    [6]

    Rajesh C S, Parsania M M 2013 Am. J. Math. Stat. 3 179

    [7]

    Yao J, Chang J J, Li D C, Yang X L 2016 J. Magn. Magn. Mater. 402 28

    [8]

    Mitamura Y, Yano T, Nakamura W, Okamoto E 2013 Bio-Med. Mater. Eng. 23 63

    [9]

    Dave V, Virpura H A, Patel R J 2015 AIP Conf. Proc. 1665 050139

    [10]

    Nguyen N T, Beyzavi A, Ng K M, Huang X Y 2007 Microfluid Nanofluid 3 571

    [11]

    Liu J, Tan S H, Yap Y F, Ng M Y, Nguyen N T 2011 Microfluid Nanofluid 11 177

    [12]

    Brousseau D, Borra E F, Hubert J R, Parent J 2006 Opt. Express 14 11486

    [13]

    Brousseau D, Borra E F, Thibault S 2007 Opt. Express 15 18190

    [14]

    Borra E F, Brousseau D, Cliche M, Parent J 2008 Mon. Not. R. Astron. Soc. 391 1925

    [15]

    Iqbal A, Amara F B 2008 Int. J. Optomechatroni. 2 126

    [16]

    Ritcey A M, Borra E 2010 ChemPhysChem 11 981

    [17]

    Lemmer A J, Griffiths I M, Groff T D, Rousing A W, Kasdin N J 2016 Proc. SPIE 9912 99122K

    [18]

    Dery J P, Brousseau D, Rochette M, Borra E F, Ritcey A M 2016 J. Appl. Polym. Sci. 134 44542

    [19]

    Wu Z Z, Kong X H, Wu J Q, Liu M, Xie S R 2016 Chin. J. Sci. Instrum. 37 1509 (in Chinese) [吴智政, 孔祥会, 吴君秋, 刘梅, 谢少荣 2016 仪器仪表学报 37 1509]

    [20]

    Wu Z Z, Kong X H, Zhang Z, Wu J Q, Wang T, Liu M 2017 Micromachines 8 72

    [21]

    Bayanna A R, Louis R E, Chatterjee A, Mathew S K, Venkatakrishnan P 2015 Appl. Opt. 54 1727

    [22]

    Bastaits R, Alaluf D, Horodinca M, Romanescu I, Burda I, Martic G, Rodrigues G, Preumont A 2014 Appl. Opt. 53 6635

    [23]

    Du R Q, Zhang X J 2011 Opto-Electron. Eng. 38 30

    [24]

    Calero V, Garca-Martnez P, Albero J 2013 Opt. Lett. 38 4663

    [25]

    Yao K, Wang J, Liu X, Liu W 2014 Opt. Express 22 17216

    [26]

    Peng F, Lee Y, Luo Z, Wu S 2015 Opt. Lett. 40 5097

    [27]

    Ghaffaria A, Hashemabadi S H, Bazmib M 2015 Colloid. Surface A 481 186

    [28]

    Shi D, Bi Q, Zhou R 2014 Numer. Heat Tr. A: Appl. 66 144

    [29]

    Akhtar S N, Sharma S, Dayal G, Ramakrishna S A, Ramkumar J 2015 J. Micromech. Microeng. 25 065001

    [30]

    Jiao L, Cai J, Ma H H, Li G X, Shen Z W, Tang Z P 2014 Appl. Surf. Sci. 301 481

    [31]

    Marmo J, Injeyan H, Komine H, McNaught S, Machan J, Sollee J 2009 Proc. SPIE 7195 719507A

    [32]

    Wu Z Z, Iqbal A, Ben Amara F 2013 Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems (New York: Springer) pp99-115

    [33]

    Caprari R S 1995 Meas. Sci. Technol. 6 593

    [34]

    Wu J Q, Wu Z Z, Kong X H, Zhang Z, Liu M 2017 Optoelectron. Lett. 13 90

    [35]

    Lu F, He Z W 2012 Comput. Simul. 29 1006 (in Chinese) [卢飞, 何忠武 2012 计算机仿真 29 1006]

  • [1] Huang Xiao-Dong, He Bin-Xuan, Song Zhen, Mi Yuan-Yuan, Qu Zhi-Lin, Hu Gang. A review of advances in multiscale modelings, computations, and dynamical theories of arrhythmias. Acta Physica Sinica, 2024, 73(21): 218702. doi: 10.7498/aps.73.20240977
    [2] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [3] Liang Dian-Ming, Wang Chao, Shi Hao-Dong, Liu Zhuang, Fu Qiang, Zhang Su, Zhan Jun-Tong, Yu Yi-Xin, Li Ying-Chao, Jiang Hui-Lin. Aberration correction for ellipsoidal window optical system based on Zernike mode coefficient optimization. Acta Physica Sinica, 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [4] Wei Xiang, Wu Zhi-Zheng, Cao Zhan, Wang Yuan-Yuan, Dziki Mbemba. Shaping self-accelerating Bessel-like optical beams along arbitrary trajectories by magnetic fluid deformable mirror. Acta Physica Sinica, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [5] Liu Zhang-Wen, Li Zheng-Dong, Zhou Zhi-Qiang, Yuan Xue-Wen. Adaptive optics correction technique based onfuzzy control. Acta Physica Sinica, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [6] Shi Guo-Dong, Zhang Hai-Ming, Bao Bo-Cheng, Feng Fei, Dong Wei. Dynamical modeling and multi-periodic behavior analysis on pulse train controlled DCM-DCM BIFRED converter. Acta Physica Sinica, 2015, 64(1): 010501. doi: 10.7498/aps.64.010501
    [7] Tang Yan-Qiu, Sun Qiang, Zhao Jian, Yao Kai-Nan. A closed-loop aberration compensating method of optics system based on holography. Acta Physica Sinica, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [8] Yu Qing, Bao Bo-Cheng, Xu Quan, Chen Mo, Hu Wen. Inductorless chaotic circuit based on active generalized memristors. Acta Physica Sinica, 2015, 64(17): 170503. doi: 10.7498/aps.64.170503
    [9] Yu Qing, Bao Bo-Cheng, Hu Feng-Wei, Xu Quan, Chen Mo, Wang Jiang. Wien-bridge chaotic oscillator based on fisrt-order generalized memristor. Acta Physica Sinica, 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
    [10] Wu Song-Rong, He Sheng-Zhong, Xu Jian-Ping, Zhou Guo-Hua, Wang Jin-Ping. Dynamical modeling and multi-period behavior analysis of voltage-mode bi-frequency controlled switching converter. Acta Physica Sinica, 2013, 62(21): 218403. doi: 10.7498/aps.62.218403
    [11] Deng Hai-Dong, Li Hai. Interaction and assembly of non-magnetic spheres and magnetic nanoparticles dispersed in magnetic fluid. Acta Physica Sinica, 2013, 62(12): 127501. doi: 10.7498/aps.62.127501
    [12] Wang Cong-Qing, Wu Peng-Fei, Zhou Xin. Control and modeling of chaotic dynamics for a free-floating rigid-flexible coupling space manipulator based on minimal joint torque's optimization. Acta Physica Sinica, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [13] Yu Guo-Jun, Pu Sheng-Li, Wang-Xiang, Ji Hong-Zhu. Tunable negative refraction properties of photonic crystals based on silicon columns arranged in magnetic liquids. Acta Physica Sinica, 2012, 61(19): 194703. doi: 10.7498/aps.61.194703
    [14] He Xing-Suo, Song Ming, Deng Feng-Yan. Dynamic modeling of flexible beam with considering shear deformation in non-inertial reference frame. Acta Physica Sinica, 2011, 60(4): 044501. doi: 10.7498/aps.60.044501
    [15] He Xing-Suo, Deng Feng-Yan, Wu Gen-Yong, Wang Rui. Dynamic modeling of a flexible beam with large overall motion and nonlinear deformation using the finite element method. Acta Physica Sinica, 2010, 59(1): 25-29. doi: 10.7498/aps.59.25
    [16] He Xing-Suo, Deng Feng-Yan, Wang Rui. Exact dynamic modeling of a spatial flexible beam with large overall motion and nonlinear deformation. Acta Physica Sinica, 2010, 59(3): 1428-1436. doi: 10.7498/aps.59.1428
    [17] Liu Yong-Li, Zhao Xing, Zhang Zong-Ning, Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the shear deformation in TiAl/Ti3Al system. Acta Physica Sinica, 2009, 58(13): 246-S253. doi: 10.7498/aps.58.246
    [18] Xue Yun, Liu Yan-Zhu, Chen Li-Qun. Methods of analytical mechanics for dynamics of the Kirchhoff elastic rod. Acta Physica Sinica, 2006, 55(8): 3845-3851. doi: 10.7498/aps.55.3845
    [19] Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [20] XING XIU-SAN. THE PHYSICAL KINETICS OF STRUCTURAL RELIABILITY. Acta Physica Sinica, 1986, 35(6): 741-749. doi: 10.7498/aps.35.741
Metrics
  • Abstract views:  7337
  • PDF Downloads:  156
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2017
  • Accepted Date:  29 September 2017
  • Published Online:  05 February 2018

/

返回文章
返回