Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Millimeter-wave half-waveplate based on field transformation

Wang Cheng Zhao Jun-Ming Jiang Tian Feng Yi-Jun

Citation:

Millimeter-wave half-waveplate based on field transformation

Wang Cheng, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Over the last decades, manipulating polarization has received much attention due to its wide applications in science and technology. In this paper, a half-waveplate based on a field transformation (FT) method is proposed and investigated in order to convert polarization, which works at millimeter-wave band with a wide incident angle and broad working bandwidth.Inspired by the FT method, we confine our attention to a two-dimensional (2D) case of in-plane wave propagation on the x-y plane, with both material properties and fields unchanged in the z direction. The fields are denoted with a subscript “(0)” in the virtual space. Then a series of theoretical calculations is analyzed in detail. Under the guidance of theoretical analysis, it is shown that the main job for realizing this half-wavepalate is to obtain a material with specific permittivity and permeability. The proposed waveplate is composed of periodically arranged two dielectric layers each with sub-wavelength in height. By using the effective medium theory, the effective electromagnetic (EM) parameters of the waveplate can be tuned by manipulating the heights of the two dielectric layers. Among them one layer is a material with a permittivity of 10 and height of 0.68 mm, and another layer material has a permittivity of 1, and height of 5 mm. We alternately arrange the two materials along one direction periodically to obtain a waveplate for realizing the TE-to-TM and LCP-to-RCP conversion. The thickness of whole waveplate is 5.5 mm. A broadband EM half-waveplate is achieved in millimeter-wave region, which possesses a nearly 90% conversion efficiency across the frequency band from 24 GHz to 37 GHz. At the same time, we also find that when the incident angle gradually increases from 0° to 60°, the performances of polarization conversion efficiency and working bandwidth are still good. For the incident angle of 60°, a 3-dB bandwidth over 26-33 GHz is still achieved. The performance of the waveplate is verified through both full-wave simulation and experimental measurement, which are in good agreement with each other. Meanwhile, three-dimensional (3D) printing technology makes the sample fabricated more easily. Another advantage of our design is that the 3D printing technology can be used to carry out the experimental fabrication, which may pave a new way to manufacturing more microwave devices.
      Corresponding author: Zhao Jun-Ming, jmzhao@nju.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 61671231, 61571218, 61571216, 61301017, 61371034).
    [1]

    Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483

    [2]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607

    [3]

    Gansel J K 2009 Science 325 1513

    [4]

    Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870

    [5]

    Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152

    [6]

    Wu L 2014 Appl. Phys. A 116 014

    [7]

    Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849

    [8]

    Hao J 2006 Phys. Rev. Lett. 99 063908

    [9]

    Ye Y, He S 2010 Appl. Phys. Lett. 96 203501

    [10]

    Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870

    [11]

    Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804

    [12]

    Doumanis E 2012 IEEE Trans. Antennas Propag 60 212

    [13]

    Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615

    [14]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [15]

    Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902

    [16]

    Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [17]

    Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825

    [18]

    Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901

    [19]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [20]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [21]

    Ma H F, Cui T J 2010 Nat. Commun 1 21

    [22]

    Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [23]

    Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127

    [24]

    Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903

    [25]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [26]

    Kwon D H, Werner D H 2008 Opt. Express 16 18731

    [27]

    Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902

    [28]

    Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906

    [29]

    Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901

    [30]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532

  • [1]

    Elston S J, Brown B, Preist T W, Sambles J R 1991 Phys. Rev. B 44 3483

    [2]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604-607

    [3]

    Gansel J K 2009 Science 325 1513

    [4]

    Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870

    [5]

    Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152

    [6]

    Wu L 2014 Appl. Phys. A 116 014

    [7]

    Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849

    [8]

    Hao J 2006 Phys. Rev. Lett. 99 063908

    [9]

    Ye Y, He S 2010 Appl. Phys. Lett. 96 203501

    [10]

    Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870

    [11]

    Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804

    [12]

    Doumanis E 2012 IEEE Trans. Antennas Propag 60 212

    [13]

    Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615

    [14]

    Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116

    [15]

    Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902

    [16]

    Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [17]

    Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825

    [18]

    Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901

    [19]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901

    [20]

    Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337

    [21]

    Ma H F, Cui T J 2010 Nat. Commun 1 21

    [22]

    Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901

    [23]

    Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127

    [24]

    Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 Phys. Rev. Lett. 102 183903

    [25]

    Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105

    [26]

    Kwon D H, Werner D H 2008 Opt. Express 16 18731

    [27]

    Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902

    [28]

    Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906

    [29]

    Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901

    [30]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, SajadHaq, Hao Y 2015 Sci. Reports 5 17532

  • [1] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [2] Feng Jia-Lin, Shi Hong-Yu, Wang Yuan, Zhang An-Xue, Xu Zhuo. Wide-angle method for vortex electromagnetic wave generation using field transformation. Acta Physica Sinica, 2020, 69(13): 135201. doi: 10.7498/aps.69.20200365
    [3] Gao Qiang, Wang Xiao-Hua, Wang Bing-Zhong. Far-field super-resolution imaging based on wideband stereo-metalens. Acta Physica Sinica, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [4] Chen Wei, Gao Jun, Zhang Guang, Cao Xiang-Yu, Yang Huan-Huan, Zheng Yue-Jun. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [5] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng. Broadband circularly polarized high-gain antenna design based on single-layer reflecting metasurface. Acta Physica Sinica, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [6] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [7] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [8] Li Hao, Zhu Jing-Ping, Zhang Ning, Zhang Yun-Yao, Qiang Fan, Zong Kang. Effect of half wave plate angle mismatch on channel modulating imaging result and its compensation. Acta Physica Sinica, 2016, 65(13): 134202. doi: 10.7498/aps.65.134202
    [9] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Design and verification of a two-dimensional wide band phase-gradient metasurface. Acta Physica Sinica, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [10] Liang Wen-Yao, Zhang Yu-Xia, Chen Wu-He. Physical mechanism of super-broadband and all-angle self-collimation transmission in photonic crystal with low rotational symmetry. Acta Physica Sinica, 2015, 64(6): 064209. doi: 10.7498/aps.64.064209
    [11] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [12] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [14] Zhao Yi, Cao Xiang-Yu, Gao Jun, Yao Xu, Ma Jia-Jun, Li Si-Jia, Yang Huan-Huan. A wideband low RCS reflection screen based on artificial magnetic conductor orthogonal array. Acta Physica Sinica, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [15] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [16] Chen Yu-Ting-Wu, Han Peng-Yu, Kuo Mei-Ling, Lin Shawn-Yu, Zhang Xi-Cheng. Terahertz broadband antireflection photonic device with graded refractive indices. Acta Physica Sinica, 2012, 61(8): 088401. doi: 10.7498/aps.61.088401
    [17] Feng Ye, Yang Yi-Biao, Wang An-Bang, Wang Yun-Cai. Generation of 27 GHz flat broadband chaotic laser with semiconductor laser loop. Acta Physica Sinica, 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [18] Zhang Qing-Bin, Lan Peng-Fei, Hong Wei-Yi, Liao Qing, Yang Zhen-Yu, Lu Pei-Xiang. The effect of controlling laser field on broadband suppercontinuum generation. Acta Physica Sinica, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [19] Wang Xiao-Hui, Lü Zhi-Wei, Lin Dian-Yang, Wang Chao, Tang Xiu-Zhang, Gong Kun, Shan Yu-Sheng. Stimulated Brillouin scattering reflection pumped by broadband KrF laser. Acta Physica Sinica, 2006, 55(3): 1224-1230. doi: 10.7498/aps.55.1224
    [20] Ma Jing, Zhang Guang-Yu, Rong Yi-Wen, Tan Li-Ying. Theoretical analysis of polarization tracking based on half-wave plate. Acta Physica Sinica, 2006, 55(1): 24-28. doi: 10.7498/aps.55.24
Metrics
  • Abstract views:  6362
  • PDF Downloads:  321
  • Cited By: 0
Publishing process
  • Received Date:  02 August 2017
  • Accepted Date:  10 February 2018
  • Published Online:  05 April 2018

/

返回文章
返回