Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wide-angle method for vortex electromagnetic wave generation using field transformation

Feng Jia-Lin Shi Hong-Yu Wang Yuan Zhang An-Xue Xu Zhuo

Citation:

Wide-angle method for vortex electromagnetic wave generation using field transformation

Feng Jia-Lin, Shi Hong-Yu, Wang Yuan, Zhang An-Xue, Xu Zhuo
PDF
HTML
Get Citation
  • The Field transformation (FT) is a novel theory for controlling the polarization and impedance of electromagnetic waves, which is independent on the angle of incidence. Thus, the FT method is superior for wide-angle devices design. In this paper, we propose a wide-angle method for generating vortex beam based on the FT theory. According to this method, an artificial media for vortex beam generation is designed and simulated, which demonstrates the proposed method. The designed artificial media is a multi-layered structure, which can generate vortex beam of order 2 with an incident angle stability up to 60°.
      Corresponding author: Shi Hong-Yu, honyo.shi1987@gmail.com
    [1]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys. 15 33026Google Scholar

    [2]

    Menglin C, Li J, Wei S 2018 Appl. Sci. 8 362Google Scholar

    [3]

    Wang J, Yang J Y, Fazal I M 2012 Nat. Photonics 6 488Google Scholar

    [4]

    苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪 2008 物理学报 57 3016Google Scholar

    Su Z K, Wang F Q, Lu Y Q, Jin R B, Liang R B, Liu S H 2008 Acta Phys. Sin. 57 3016Google Scholar

    [5]

    Lemaitre-Auger P, Abielmona S, Caloz C 2013 IEEE Trans. Antennas Propag. 61 1838Google Scholar

    [6]

    David G 2003 Nature 424 810Google Scholar

    [7]

    刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar

    [8]

    Oemrawsingh S S R, Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J K, Kloosterboer J G 2004 Appl. Opt. 43 688Google Scholar

    [9]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [10]

    Turnbull G A, Robertson D A, Smith G M, Allen L, Padgett M J 1996 Opt. Commun. 127 183Google Scholar

    [11]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [12]

    Paterson C, Smith R 1996 Opt. Commun. 124 121Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K 2010 IEEE Trans. Antennas Propag. 2 565

    [14]

    Genevet P, Y u, N, Aieta F, Lin J, Kats M A, Blanchard R 2012 Appl. Phys. Lett. 100 1

    [15]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C 2015 Sci. Adv. 1 e1500396Google Scholar

    [16]

    Huang L, Chen X, Holger Mühlenbernd, Li G, Zhang S 2012 Nano Lett. 12 5750Google Scholar

    [17]

    Arbabi A, Horie Y, Bagheri M 2015 Nat. Nanotechnol. 10 937Google Scholar

    [18]

    Yue F, Wen D, Xin J, Gerardot B D, Li J, Chen X 2016 ACS Photonics acsphotonics 6 b00392

    [19]

    Yang H, Niu J, Zhang K, Ding X, Wu Q 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT) Harbin, China, August 20–22, 2016 p552

    [20]

    Tamburini F, Mari E, Thideì Bo, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [21]

    Vaishnavi V, Priya V G, Sharmila Devi A, Manoj Kumar M, Venkatesh S, Sundaram G A 2014 International Conference on Communication and Signal Processing Melmaruvathur, India, April 3–5, 2014 p1414

    [22]

    Liu F, Liang Z, Li J 2013 Phys. Rev. Lett. 111 033901Google Scholar

    [23]

    Liu F, Li J S 2015 Phys. Rev. Lett. 114 103902Google Scholar

    [24]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, Haq S, Hao Y 2015 Sci. Rep. 5 17532Google Scholar

    [25]

    Shi H Y, Hao Y 2013 Opt. Express 26 20132

    [26]

    Shi H, Giddens H, Hao Y 2019 IET Microwaves Antennas Propag. 13 1450Google Scholar

    [27]

    Shi H Y, Giddens H, Hao Y 2017 IEEE Antennas Wirel. Propag. Lett. 16 2869

    [28]

    Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar

    [29]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2016 Science 314 977

    [30]

    Born M, Wolf E, Bhatia A B 2002 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th (expanded) (Cambridge: Cambridge University Press) pp220–225

    [31]

    Chen M L N, Jiang L J, Sha W E I 2016 J. Appl. Phys. 119 064506Google Scholar

    [32]

    Kang M, Chen J, Wang X, Wang H 2012 J.Opt. Soc. Am. B: Opt. Phys. 29 572Google Scholar

  • 图 1  场变换示意图

    Figure 1.  Schematic diagram of the FT medium.

    图 2  人工双折射材料: $xyz$轴绕y轴旋转45°变成${x'}y{z'}$, 入射波在$xy$平面内, $\theta $为入射角, ${k_0}$是入射波的波数

    Figure 2.  Artificial birefringence medium: The $xyz$ coordinate is twisted along the y -axis by 45° to the ${x'}y{z'}$ coordinate. The incident plane is x-y plane, $\theta $ is the incident angle, ${k_0}$ is the wave vector of the incident wave.

    图 3  Pancharatnam-Berry(几何)相位, 入射波沿y方向照射到单元上, 单元绕y轴旋转$\alpha $, 带来$2\alpha $的相位变化

    Figure 3.  Pancharatnam-Berry phase: When the EM wave incident on the unit along y direction, and the unit rotates $\alpha $ around the y axis, the phase changed $2\alpha $.

    图 4  单元模型

    Figure 4.  The model of unit cell.

    图 5  (a) ${J_{xx}}$${J_{yy}}$的幅度 ; (b) ${J_{xx}}$${J_{yy}}$的相位

    Figure 5.  (a) The amplitude of ${J_{xx}}$ and ${J_{yy}}$; (b) the phase of ${J_{xx}}$ and ${J_{yy}}$.

    图 6  ${J_{xy}}$${J_{yx}}$的幅度

    Figure 6.  The amplitude of ${J_{xy}}$ and ${J_{yx}}$.

    图 7  (a)旋转所形成的介质圆环的主视图, 由100个圆环组成每个圆环的半径为4 mm; (b)介质圆环的侧视图

    Figure 7.  (a) Main view of dielectric rings, it’s consists of 100 rings with radius of 4 mm and thickness of dielectric rings is 30 mm; (b) side view of dielectric rings.

    图 8  (a)垂直入射的透射波; (b)介质圆环周围空间的电场分布; (c)13 GHz时右旋圆极化波的幅度; (d)13 GHz时右旋圆极化波的相位

    Figure 8.  (a) The transmission wave while incident angle is 0°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 13 GHz ; (d) phase of RCP wave at 13 GHz.

    图 9  (a) 20°斜入射时的透射波; (b)介质圆环周围空间的电场分布; (c) 20°斜入射时13 GHz的右旋圆极化波的幅度; (c) 20°斜入射时在13 GHz的右旋圆极化波的相位

    Figure 9.  (a) The transmission wave while incident angle is 20°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 20° oblique incidence; (d) phase of RCP wave at 20° oblique incidence.

    图 10  (a) 40°斜入射时的透射波; (b)介质圆环周围空间的电场分布; (c) 40°斜入射时13 GHz的右旋圆极化波的幅度; (d) 40°斜入射时13 GHz的右旋圆极化波的相位

    Figure 10.  (a) The transmission wave while incident angle is 40°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 40° oblique incidence; (d) phase of RCP wave at 40° oblique incidence.

    图 11  (a) 50°斜入射时的透射波; (b)介质圆环周围空间的电场分布; (c) 50°斜入射时13 GHz的右旋圆极化波的幅度; (d) 50°斜入射时在13 GHz的右旋圆极化波的相位

    Figure 11.  (a) The transmission wave while incident angle is 50°; (b) E-field distribution around dielectric rings; (c) amplitude of RCP wave at 50° oblique incidence; (d) phase of RCP wave at 50° oblique incidence.

    图 12  (a) 60°斜入射时的透射波; (b) 60°入射时介质圆环周围的电场分布; (c) 60°斜入射时13 GHz的右旋圆极化波的幅度; (d) 60°斜入射时13 GHz的右旋圆极化波的相位

    Figure 12.  (a) The transmission wave while incident angle is 60°; (b) E-field distribution around dielectric rings at 60° oblique incidence; (c) amplitude of RCP wave at 60° oblique incidence; (d) phase of RCP wave at 60° oblique incidence.

    表 1  垂直入射时不同频点的右旋分量的最大值

    Table 1.  Maximum values of RCP at different frequencies when normal incidence.

    频率/GHz右旋圆极化分量最大值/dBi
    1114.70
    1215.80
    1316.90
    1417.30
    1517.50
    DownLoad: CSV

    表 2  20°斜入射时不同频点的右旋分量的最大值

    Table 2.  Maximum values of RCP at different frequencies when incident angle is 20°.

    频率/GHz右旋圆极化分量最大值/dBi
    1115.30
    1216.10
    1317.20
    1417.70
    1517.40
    DownLoad: CSV

    表 3  40°斜入射时不同频点右旋分量的最大值

    Table 3.  Maximum values of RCP at different frequencies when incident angle is 40°.

    频率/GHz右旋圆极化分量最大值/dBi
    1116.0
    1216.7
    1317.4
    1418.6
    1518.5
    DownLoad: CSV

    表 4  50°斜入射时不同频点的左旋和右旋分量的最大值

    Table 4.  Maximum values of RCP at different frequencies when incident angle is 50°.

    频率/GHz右旋圆极化分量最大值/dBi
    1116.8
    1217.2
    1317.6
    1418.6
    1519.6
    DownLoad: CSV

    表 5  60°斜入射时不同频点的左旋和右旋分量的最大值

    Table 5.  Maximum values of RCP at different frequencies when incident angle is 60°.

    频率/GHz右旋圆极化分量最大值/dBi
    1116.1
    1216.9
    1317.9
    1418.5
    1519.6
    DownLoad: CSV
  • [1]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys. 15 33026Google Scholar

    [2]

    Menglin C, Li J, Wei S 2018 Appl. Sci. 8 362Google Scholar

    [3]

    Wang J, Yang J Y, Fazal I M 2012 Nat. Photonics 6 488Google Scholar

    [4]

    苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪 2008 物理学报 57 3016Google Scholar

    Su Z K, Wang F Q, Lu Y Q, Jin R B, Liang R B, Liu S H 2008 Acta Phys. Sin. 57 3016Google Scholar

    [5]

    Lemaitre-Auger P, Abielmona S, Caloz C 2013 IEEE Trans. Antennas Propag. 61 1838Google Scholar

    [6]

    David G 2003 Nature 424 810Google Scholar

    [7]

    刘义东, 高春清, 高明伟, 李丰 2007 物理学报 56 854Google Scholar

    Liu Y D, Gao C Q, Gao M W, Li F 2007 Acta Phys. Sin. 56 854Google Scholar

    [8]

    Oemrawsingh S S R, Houwelingen J A W, Eliel E R, Woerdman J P, Verstegen E J K, Kloosterboer J G 2004 Appl. Opt. 43 688Google Scholar

    [9]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [10]

    Turnbull G A, Robertson D A, Smith G M, Allen L, Padgett M J 1996 Opt. Commun. 127 183Google Scholar

    [11]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [12]

    Paterson C, Smith R 1996 Opt. Commun. 124 121Google Scholar

    [13]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K 2010 IEEE Trans. Antennas Propag. 2 565

    [14]

    Genevet P, Y u, N, Aieta F, Lin J, Kats M A, Blanchard R 2012 Appl. Phys. Lett. 100 1

    [15]

    Pu M, Li X, Ma X, Wang Y, Zhao Z, Wang C 2015 Sci. Adv. 1 e1500396Google Scholar

    [16]

    Huang L, Chen X, Holger Mühlenbernd, Li G, Zhang S 2012 Nano Lett. 12 5750Google Scholar

    [17]

    Arbabi A, Horie Y, Bagheri M 2015 Nat. Nanotechnol. 10 937Google Scholar

    [18]

    Yue F, Wen D, Xin J, Gerardot B D, Li J, Chen X 2016 ACS Photonics acsphotonics 6 b00392

    [19]

    Yang H, Niu J, Zhang K, Ding X, Wu Q 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT) Harbin, China, August 20–22, 2016 p552

    [20]

    Tamburini F, Mari E, Thideì Bo, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [21]

    Vaishnavi V, Priya V G, Sharmila Devi A, Manoj Kumar M, Venkatesh S, Sundaram G A 2014 International Conference on Communication and Signal Processing Melmaruvathur, India, April 3–5, 2014 p1414

    [22]

    Liu F, Liang Z, Li J 2013 Phys. Rev. Lett. 111 033901Google Scholar

    [23]

    Liu F, Li J S 2015 Phys. Rev. Lett. 114 103902Google Scholar

    [24]

    Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, Haq S, Hao Y 2015 Sci. Rep. 5 17532Google Scholar

    [25]

    Shi H Y, Hao Y 2013 Opt. Express 26 20132

    [26]

    Shi H, Giddens H, Hao Y 2019 IET Microwaves Antennas Propag. 13 1450Google Scholar

    [27]

    Shi H Y, Giddens H, Hao Y 2017 IEEE Antennas Wirel. Propag. Lett. 16 2869

    [28]

    Chen M L N, Jiang L J, Sha W E I 2019 IEEE Antennas Wirel. Propag. Lett. 18 477Google Scholar

    [29]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2016 Science 314 977

    [30]

    Born M, Wolf E, Bhatia A B 2002 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th (expanded) (Cambridge: Cambridge University Press) pp220–225

    [31]

    Chen M L N, Jiang L J, Sha W E I 2016 J. Appl. Phys. 119 064506Google Scholar

    [32]

    Kang M, Chen J, Wang X, Wang H 2012 J.Opt. Soc. Am. B: Opt. Phys. 29 572Google Scholar

  • [1] Gao Yu-Jie, Li Jin-Hong, Wang Jing, Liu Jin-Hong, Yin Xiao-Jin. Vector properties of angular momentum of cylindrical vector vortex beam in free space. Acta Physica Sinica, 2025, 74(5): . doi: 10.7498/aps.74.20241344
    [2] Chen Bo, Liu Jin, Li Jun-Tao, Wang Xue-Hua. Research progress of integrated quantum light sources with orbital angular momentum. Acta Physica Sinica, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [3] Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum. Acta Physica Sinica, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] Xu Meng-Min, Li Xiao-Qing, Tang Rong, Ji Xiao-Ling. Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams. Acta Physica Sinica, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] Wang Cheng, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun. Millimeter-wave half-waveplate based on field transformation. Acta Physica Sinica, 2018, 67(7): 070201. doi: 10.7498/aps.67.20171774
    [11] Fan Rong-Hua, Guo Bang-Hong, Guo Jian-Jun, Zhang Cheng-Xian, Zhang Wen-Jie, Du Ge. Entangled W state of multi degree of freedom system based on orbital angular momentum. Acta Physica Sinica, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [12] Ke Xi-Zheng, Chen Juan, Yang Yi-Ming. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence. Acta Physica Sinica, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [13] Wang Cong-Yi, Xu Cheng, Wu Rui-Xin. Wideband and large incident angle wave transparent material based on frequency selective surface with miniaturized elements. Acta Physica Sinica, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [14] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] Chen Xiao-Yi, Li Hai-Xia, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu, Liu Man. Measurement of orbital angular momentum of Laguerre-Gaussian beam by using phase vortices of interference fields. Acta Physica Sinica, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] Gao Ming-Wei, Gao Chun-Qing, Lin Zhi-Feng. Generation of twisted stigmatic beam and transfer of orbital angular momentum during the beam transformation. Acta Physica Sinica, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] Gao Ming-Wei, Gao Chun-Qing, He Xiao-Yan, Li Jia-Ze, Wei Guang-Hui. Rotation of particles by using the beamwith orbital angular momentum. Acta Physica Sinica, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
Metrics
  • Abstract views:  7512
  • PDF Downloads:  208
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2020
  • Accepted Date:  13 June 2020
  • Available Online:  15 June 2020
  • Published Online:  05 July 2020

/

返回文章
返回