Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio

Zhang Xiang-Yu Wang Dan Shi Huan-Wen Wang Jin-Guo Hou Zhao-Yang Zhang Li-Dong Gao Dang-Li

Citation:

Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio

Zhang Xiang-Yu, Wang Dan, Shi Huan-Wen, Wang Jin-Guo, Hou Zhao-Yang, Zhang Li-Dong, Gao Dang-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Rare earth doped upconverting micro/nanoparticles with controlled size and structure,which are excited by near-infrared light and emit the visible light,possess many applications especially in the areas of biomedicine and photonics devices.There is no universally favored spectral profile in a variety of specific applications.We expect upconversion (UC) nanoparticles with the tunable spectral behavior to meet the demand for actual applications.Although the UC emission wavelengths are strictly limited by the electronic structure of the dopant,the spectral profile could be varied by many factors such as the structure,size,and crystallization. Varying matrix host is the most convenient approach to dynamically tuning UC that is essential for a variety of studies.However,this approach suffers a significant constraint due to insensitive response of most dopant luminescence centers to matrix host.In this paper,a facile EDTA-assisted hydrothermal approach is developed to the shape-selective synthesis of fluoride microcrystals including NaYF4 rods,LiYF4 octahedrons,and YF3 cuboid brick,by only tuning the pH of the mother liquid.The UC spectra of a series of Yb3+/Er3+-doped fluoride particles with the different shapes and phases are investigated in detail under a near-infrared co-focused laser excitation.The effects of matrix hosts on UC luminescence attributed to the 4f-4f transitions of the Er3+ ions in a single particle are amplified through elevating Yb3+ concentration.The associated tuning mechanisms are explored by using the power dependent UC luminescence and the temporal evolutions of up/down-conversion emission spectra. Mechanistic investigation reveals that the sensitive response of Er3+ UC emission to matrix host stems from maximal use of the various channels populated luminescence levels.It is well known that the population and depopulation of the luminescence levels strongly depend on the excitation power density,the energy level structure of electron,the ratio of the population ions between the two levels,maximum phonon energy and phonon density.The matrix plays the most important role in both the population and depopulation of the luminescence levels mediated by modifying the radiation relaxation probability and non-radiation relaxation probability via varying lattice symmetry and phonon energy.However,the fine modification of the matrix by doping is not always effective to luminescence tuning.In the current study,comparing with LiYF4 and YF3 matrixes,it is interestingly found that NaYF4 matrix can effectively tune the intensity ratio of red to green luminescence from 0.48 to 6.11 by varying Yb3+ concentration from 0 to 98% particle.The result indicates that the multiple aspects in the UC process could be influenced by Yb3+ doping NaYF4 matrix structure.We believe that Yb3+/Er3+ codoped NaYF4 matrixes with various Yb3+ concentrations will result in applications in displays,biological imaging,chemical sensing and anticounterfeiting.
      Corresponding author: Zhang Xiang-Yu, xyzhang@chd.edu.cn;gaodangli@163.com ; Gao Dang-Li, xyzhang@chd.edu.cn;gaodangli@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51771033), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JM5055), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 310812171004, 301812172001), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.
    [1]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [2]

    Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 Phys. Status Solidi 251 1579

    [3]

    Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323

    [4]

    Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126

    [5]

    Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161

    [6]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237

    [7]

    Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416

    [8]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [9]

    Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343

    [10]

    Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259

    [11]

    Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [12]

    Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052

    [13]

    Auzel F 2004 Chem. Rev. 104 139

    [14]

    Tanabe S, Ohyagi T, Soga N, Hanada T 1992 Phys. Rev. B 46 3305

    [15]

    Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945

    [16]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)[张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 物理学报 65 204205]

    [17]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [18]

    Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528

    [19]

    Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694

    [20]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [21]

    Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212

    [22]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [23]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [24]

    Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453

    [25]

    Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165

    [26]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [27]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [28]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 物理学报 64 138101]

    [29]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622

    [31]

    Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821

    [32]

    Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020

  • [1]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924

    [2]

    Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 Phys. Status Solidi 251 1579

    [3]

    Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323

    [4]

    Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126

    [5]

    Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161

    [6]

    Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237

    [7]

    Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416

    [8]

    Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001

    [9]

    Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343

    [10]

    Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259

    [11]

    Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [12]

    Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052

    [13]

    Auzel F 2004 Chem. Rev. 104 139

    [14]

    Tanabe S, Ohyagi T, Soga N, Hanada T 1992 Phys. Rev. B 46 3305

    [15]

    Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945

    [16]

    Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)[张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 物理学报 65 204205]

    [17]

    Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643

    [18]

    Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528

    [19]

    Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694

    [20]

    Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474

    [21]

    Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212

    [22]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [23]

    Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433

    [24]

    Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453

    [25]

    Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165

    [26]

    Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357

    [27]

    Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288

    [28]

    Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 物理学报 64 138101]

    [29]

    Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [30]

    Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622

    [31]

    Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821

    [32]

    Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020

  • [1] Xiong Jia-Cheng, Huang Zhe-Qun, Zhang Heng, Wang Qi-Xiang, Cui Ke-Hang. Spectral regulation in thermophotovoltaic devices. Acta Physica Sinica, 2024, 73(14): 144402. doi: 10.7498/aps.73.20240629
    [2] Meng Yong-Jun, Li Hong, Tang Jian-Wei, Chen Xue-Wen. Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [3] Modulation of the upconversion luminescence spectrum of a single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211438
    [4] Gao Wei, Dong Jun. Tuning upconversion fluorescence emission of -NaLuF4:Yb3+/Ho3+ nanocrystals through codoping Ce3+ ions. Acta Physica Sinica, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [5] Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li. Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods. Acta Physica Sinica, 2016, 65(20): 204205. doi: 10.7498/aps.65.204205
    [6] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [7] Sun Yu, Yang Chun-Hui, Jiang Zhao-Hua, Meng Xiang-Bin. Room temperature absorption spectra analysis of Er3+/Yb3+-doped Hydrothermal Epitaxial Layer on LiNbO3 and LiTaO3 Single Crystal Substrates. Acta Physica Sinica, 2012, 61(12): 127801. doi: 10.7498/aps.61.127801
    [8] Zhou Peng-Yu, Zhang Qing-Li, Yang Hua-Jun, Ning Kai-Jie, Sun Dun-Lu, Luo Jian-Qiao, Yin Shao-Tang. Growth and spectral properties of 5 at%Yb:YNbO4 crystal. Acta Physica Sinica, 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [9] Ning Kai-Jie, Zhang Qing-Li, Zhou Peng-Yu, Yang Hua-Jun, Xu Lan, Sun Dun-Lu, Yin Shao-Tang. Structure and spectral properties of Yb3+:Gd2SiO5 crystal. Acta Physica Sinica, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [10] Liu Li-Sha, Lü Shu-Chen, Sun Jiang-Ting. Spectroscopic properties and up-conversion luminescence Er3+/Yb3+ co-doped TeO2-WO3-Bi2O3 glass. Acta Physica Sinica, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [11] Huang Tong-De, Jiang Ben-Xue, Wu Yu-Song, Li Jiang, Shi Yun, Liu Wen-Bin, Pan Yu-Bai, Huang Li-Ping, Guo Jing-Kun. Fabrication of Yb3+,Er3+:YAG transparent ceramics and study of its 1.5 μm fluorescence spectrum. Acta Physica Sinica, 2009, 58(2): 1298-1304. doi: 10.7498/aps.58.1298
    [12] Xiao Si-Guo, Yang Xiao-Liang, Ding Jian-Wen. Luminescence properties and upconversion of Er3+ doped and Er3+/Yb3+ co-doped LaF3 particles. Acta Physica Sinica, 2009, 58(6): 3812-3820. doi: 10.7498/aps.58.3812
    [13] Jia Xiang-Hua, Lü Shu-Chen. Spectroscopic properties of Er3+and Er3+/Yb3+ co-doped bismuth glasses. Acta Physica Sinica, 2007, 56(8): 4971-4976. doi: 10.7498/aps.56.4971
    [14] Ding Jun, Yang Qiu-Hong, Tang Zai-Feng, Xu Jun, Su Liang-Bi. Spectroscopic properties of Er3+/Yb3+ co-doped transparent yttrium lanthanum oxide ceramic. Acta Physica Sinica, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [15] Zhang Li-Jie, Lei Ming, Wang Yu-Ming, Li Jian-Li, Sun Yu, Liu Jing-He. Growth, structure and spectral properties of Yb3+-doped KY(WO4)2 laser crystal. Acta Physica Sinica, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [16] Li Tao, Zhang Qin-Yuan, Jiang Zhong-Hong. Effects of Ce3+ ions on the spectroscopic properties of fluorophosphate glasses codoped with Er3+/Yb3+. Acta Physica Sinica, 2006, 55(8): 4298-4303. doi: 10.7498/aps.55.4298
    [17] Shen Xiang, Nie Qiu-Hua, Xu Tie-Feng, Gao Yuan. Investigation of spectral properties and thermal stability of Er3+/Yb3+ co-doped tungsten-tellurite glasses. Acta Physica Sinica, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [18] Zhang Li-Yan, Wen Lei, Xu Yong-Chun, Hu Li-Li. Spectral and laser properties of Yb3+ doped aluminium fluorophosphate glasses. Acta Physica Sinica, 2004, 53(5): 1567-1571. doi: 10.7498/aps.53.1567
    [19] Dai Shi-Xun, Yang Jian-Hu, Dai Neng-Li, Xu Shi-Qing, Wen Lei, Hu Li-Li, Jiang Zhong-Hong. Effect of radiation trapping on spectroscopic properties of Yb3+-dope d phosphate glasses. Acta Physica Sinica, 2003, 52(6): 1533-1539. doi: 10.7498/aps.52.1533
    [20] ZHANG LONGL, LIN FENG-YING, HU HE-FANG. SPECTROSCOPIC PROPERTIES OF Yb3+-DOPED TETRAPHOSPHATE GLASS. Acta Physica Sinica, 2001, 50(7): 1378-1384. doi: 10.7498/aps.50.1378
Metrics
  • Abstract views:  6361
  • PDF Downloads:  165
  • Cited By: 0
Publishing process
  • Received Date:  25 August 2017
  • Accepted Date:  01 January 2018
  • Published Online:  20 April 2019

/

返回文章
返回