-
A novel approach to using tunable diode laser absorption spectroscopy (TDLAS) is developed for measuring the laser intensity and absorbance of gas with highly broadened and congested spectra by wavelength division multiplex (WDM) technology. Direct absorption spectroscopy with non-linear algorithm is utilized, because this fitting method offers benefits in dealing with blended spectral features according to the relationship between transmitted laser intensity and absorbance by Beer law. Compared with traditional TDLAS sensing with WDM, this approach has some advantages of transmissions demultiplexing without additional optic gratings and detectors. Following the published theory, the absorbance and transmitted laser intensity are incorporated into an improved non-linear fitting model. A solution to a simulation of CO2 blended spectrum at a pressure of 5 atm is exploited to demonstrate the ability to recover the absorption in a high pressure environment, inferring the optimal combination of parameters in the model. The influences of these nonideal laser effects, such as nonlinear and linear coefficients, are investigated by the multiplexed transmission simulations at rovibrational transitions of H2O near 7444 cm-1 and 7185 cm-1. Errors in absorbance fitting is larger when nonlinear or linear coefficients of two lasersbecome closer. The satisfied results can be obtained when linear coefficients ratio is limited whitin a range from 0.05 to 0.67. In addition, the essential transition spacing in multiplexed transmissions, larger than the full width of transitions, is considered to be able to improve the fitting accuracy. This approach is validated in a static absorption cell over a pressure range from 1 to 10 atm at room temperature to demonstrate the ability to measure the blended CO2 spectrum from 63307 cm-1 to 6337 cm-1 by a single DFB laser. The sensor method resolves laser intensity with a nonlinear coefficient of 1.4×10-4 and recovers absorbance with a root mean square (RMS) precision of 3.2%, which demonstrates the applicability of this sensor to high-pressure gas sensing systems. Another approach to validating the gas temperature and measuring H2O by WDM is presented in a gas-liquid two phase pulsed detonation engine running with a filling fraction of 100%. Two fiber coupled lasers, respectively, near 7185.6 cm-1 and 7444.35 cm-1 are scanned at 20 kHz to achieve a temporal resolution of 50 μs for monitoring detonation exhaust. A fixed spectrum interval (about 0.7 cm-1) of transitions in multiplexed transmission is created through temperature adjustment in DFB laser to provide more independent absorption information. Recovered linear coefficients of 0.18 and 0.46 in two DFB lasers are in good agreement with the results from the simulations. An instantaneous temperature measurement of 1183 K in the exhaust 7.45 ms after detonation wave provides the confirmation of the ability of this method to infer the temperature and H2O time histories in the whole detonation process. In conclusion, the novel approach based on TDLAS has tremendous potential applications in high pressure combustion diagnosis and WDM spectrum analysis.
-
Keywords:
- tunable diode laser absorption spectroscopy /
- diode laser /
- wavelength division multiplex /
- detonation
[1] Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]
[2] Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]
[3] L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]
[4] Hanson R K 2011 P. Combust. Inst. 33 1
[5] Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407
[6] Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568
[7] Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942
[8] Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865
[9] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052
[10] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500
[11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740
[12] Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949
[13] Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51
[14] Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195
[15] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705
[16] Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]
[17] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474
[18] Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]
[19] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
[20] Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043
[21] Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224
[22] Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592
[23] Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713
[24] Watson G A 2007 J. Comput. Appl. Math. 208 331
[25] Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351
-
[1] Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]
[2] Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]
[3] L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]
[4] Hanson R K 2011 P. Combust. Inst. 33 1
[5] Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407
[6] Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568
[7] Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942
[8] Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865
[9] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052
[10] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500
[11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740
[12] Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949
[13] Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51
[14] Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195
[15] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705
[16] Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]
[17] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474
[18] Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]
[19] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
[20] Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043
[21] Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224
[22] Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592
[23] Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713
[24] Watson G A 2007 J. Comput. Appl. Math. 208 331
[25] Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351
Catalog
Metrics
- Abstract views: 7126
- PDF Downloads: 219
- Cited By: 0