Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of proton irradiation on microstructure evolution of permanent magnet

Li Zhe-Fu Jia Yan-Yan Liu Ren-Duo Xu Yu-Hai Wang Guang-Hong Xia Xiao-Bin Shen Wei-Zu

Citation:

Effect of proton irradiation on microstructure evolution of permanent magnet

Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nd2Fe14B rare earth and Sm2Co17 type permanent magnets have been widely used in the third generation of synchronous radiation light source and free electron laser facility in undulators and other components of particle accelerators. In addition, the permanent magnets are used in the radiation treatment system for cancer as a beam line component. Compared with Sm2Co17 type permanent magnet, Nd2Fe14B rare earth permanent magnet has the characteristics of large magnet energy product, rich starting materials and low price. Although its Curie point and coercive force are lower than those of Sm2Co17 type of permanent magnet, Nd2Fe14B rare earth permanent magnet is still widely used. As an important part of the accelerator, the magnetic loss phenomenon appears when permanent magnet is used in long-term irradiation environments, which affects the stability and quality of the beam. Therefore, it is important to investigate the magnet demagnetization induced by photon irradiation. Recently, there have appeared many researches of the phenomena of demagnetization for the permanent magnets under the irradiation of various kinds of particles. By using different research methods and experimental conditions, single particle irradiation is performed and then the effect of irradiation on magnetic loss is investigated by comparing the macro magnetic properties (such as magnetic flux loss rate, saturation magnetization, etc.). However, there are not any available reports on the microstructure investigations of permanent magnets after irradiation. Microstructure affects macroscopic magnetic properties. In order to discuss the microscopic demagnetization mechanism, the transmission electron microscope is used to characterize and analyze the microstructure evolutions of Sm2Co17 type permanent magnet and Nd2Fe14B rare earth permanent magnet before and after proton irradiation. The evolution of the number density of nanocrystal and its size distribution induced by proton irradiation are calculated. Moreover, the effect of microstructure evolution on macroscopic magnetic loss is discussed. The results indicate that the microstructure of permanent magnet transforms from single crystal structure to polycrystalline structure with the increase of the proton irradiation damage level. Nanocrystal and the matrix of permanent magnet have the same crystal structure. With the irradiation damage level increasing, the nanocrystal density of Nd2Fe14B first increases and then decreases, while the particle size distribution first increases and then keeps constant; the number density of nanocrystal of Sm2Co17 type permanent magnet gradually decreases, while particle size gradually increases, and comparing with Sm2Co17 type permanent magnet, the crystal structure of Nd2Fe14B permanent magnet shows an obvious tendency to be amorphous in 2 dpa irradiation damage level.
    [1]

    He Y Z, Zhang J D, Zhou Q G, Qian Z M, Li Y 2010 High Power Laser Part. Beams 22 1627(in Chinese) [何永周, 张继东, 周巧根, 钱珍梅, 黎阳 2010 强激光与粒子束 22 1627]

    [2]

    He Y Z, Zhou Q G 2012 High Power Laser Part. Beams 24 2187(in Chinese) [何永周, 周巧根 2012 强激光与粒子束 24 2187]

    [3]

    Luna H B, Maruyama X K 1989 Nucl. Instrum. Methods Phys. Res.. 285 349

    [4]

    Okuda S, Ohashi K, Kobayashi N 1994 Nucl. Instrum. Methods Phys. Res.. 94 227

    [5]

    Bizen T, Tanaka T, Asano Y, Kim D E, Bak J S, Lee H S, Kitamura H 2001 Nucl. Instrum. Methods Phys. Res.. 467-468 185

    [6]

    Bizen T, Asano Y, Hara T, Marechal X, Seike T, Tanaka T, Lee H S, Kim D E, Chung C W, Kitamura H 2003 a Nucl. Instrum. Methods Phys. Res.. 515 850

    [7]

    Qiu R, Lee H S, Hong S, Li J L, Bizen T 2007 Nucl. Instrum. Methods Phys. Res.. 575 305

    [8]

    Qiu R, Lee H S, Li J L, Koo T Y, Jang T H 2008 Nucl. Instrum. Methods Phys. Res.. 594 111

    [9]

    Alderman J, Job P K, Martin R C, Simmons C M, Owen G D 2002 Nucl. Instrum. Methods Phys. Res.. 481 9

    [10]

    Miyahara N, Honma T, Fujisawa T 2010 Nucl. Instrum. Methods Phys. Res.. 268 57

    [11]

    Gao R S, Zhen L, Shao W Z, Hao X P 2008 J. Appl. Phys. 103 07E136

    [12]

    Gao R S, Zhen L, Li G A, Xu C Y, Shao W Z 2006 J. Magn. Magn. Mater. 302 156

    [13]

    Ito Y, Yasuda K, Ishigami R, Hatori S, Okada O, Ohashi K, Tanaka S 2001 Nucl. Instrum. Methods Phys. Res.. 183 323

    [14]

    Ito Y, Yasuda K, Ishigami R, Sasase M, Hatori S, Ohashi K, Tanaka S, Yamamoto A 2002 Nucl. Instrum. Methods Phys. Res.. 191 530

    [15]

    Ito Y, Yasuda K, Sasase M, Ishigami R, Hatori S, Ohashi K, Tanaka S 2003 Nucl. Instrum. Methods Phys. Res.. 209 362

    [16]

    Ito Y, Yasuda K, Ishigami R, Ohashi K, Tanaka S 2006 Nucl. Instrum. Methods Phys. Res.. 245 176

    [17]

    Qiu R 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邱睿 2007 博士学位论文(北京: 清华大学)]

    [18]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res.. 268 1818

    [19]

    Hashimoto N, Hunn J D, Byun T S, Mansur L K 2003 J. Nucl. Mater. 318 300

    [20]

    Tian J J, Yin H Q, Qu X H 2005 J. Magn. Mater. Dev. 36 12(in Chinese) [田建军, 尹海清, 曲选辉 2005 磁性材料及器件 36 12]

    [21]

    Li L Y, Yi J H, Huang B Y, Peng Y D 2005 Acta Metall. Sin. 41 791(in Chinese) [李丽娅, 易健宏, 黄伯云, 彭远东 2005 金属学报 41 791]

    [22]

    Weber W J 2000 Nucl. Instrum. Methods Phys. Res.. 166 98

    [23]

    Asano Y, Bizen T, Marechal X 2009 J. Synchrotron Rad. 16 317

    [24]

    Gao R S 2006 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [高润生 2006 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [25]

    Kahkonen O-P, Makinen S, Talvitie M, Manninen M 1992 J. Phys. Condens. Matter 4 1007

  • [1]

    He Y Z, Zhang J D, Zhou Q G, Qian Z M, Li Y 2010 High Power Laser Part. Beams 22 1627(in Chinese) [何永周, 张继东, 周巧根, 钱珍梅, 黎阳 2010 强激光与粒子束 22 1627]

    [2]

    He Y Z, Zhou Q G 2012 High Power Laser Part. Beams 24 2187(in Chinese) [何永周, 周巧根 2012 强激光与粒子束 24 2187]

    [3]

    Luna H B, Maruyama X K 1989 Nucl. Instrum. Methods Phys. Res.. 285 349

    [4]

    Okuda S, Ohashi K, Kobayashi N 1994 Nucl. Instrum. Methods Phys. Res.. 94 227

    [5]

    Bizen T, Tanaka T, Asano Y, Kim D E, Bak J S, Lee H S, Kitamura H 2001 Nucl. Instrum. Methods Phys. Res.. 467-468 185

    [6]

    Bizen T, Asano Y, Hara T, Marechal X, Seike T, Tanaka T, Lee H S, Kim D E, Chung C W, Kitamura H 2003 a Nucl. Instrum. Methods Phys. Res.. 515 850

    [7]

    Qiu R, Lee H S, Hong S, Li J L, Bizen T 2007 Nucl. Instrum. Methods Phys. Res.. 575 305

    [8]

    Qiu R, Lee H S, Li J L, Koo T Y, Jang T H 2008 Nucl. Instrum. Methods Phys. Res.. 594 111

    [9]

    Alderman J, Job P K, Martin R C, Simmons C M, Owen G D 2002 Nucl. Instrum. Methods Phys. Res.. 481 9

    [10]

    Miyahara N, Honma T, Fujisawa T 2010 Nucl. Instrum. Methods Phys. Res.. 268 57

    [11]

    Gao R S, Zhen L, Shao W Z, Hao X P 2008 J. Appl. Phys. 103 07E136

    [12]

    Gao R S, Zhen L, Li G A, Xu C Y, Shao W Z 2006 J. Magn. Magn. Mater. 302 156

    [13]

    Ito Y, Yasuda K, Ishigami R, Hatori S, Okada O, Ohashi K, Tanaka S 2001 Nucl. Instrum. Methods Phys. Res.. 183 323

    [14]

    Ito Y, Yasuda K, Ishigami R, Sasase M, Hatori S, Ohashi K, Tanaka S, Yamamoto A 2002 Nucl. Instrum. Methods Phys. Res.. 191 530

    [15]

    Ito Y, Yasuda K, Sasase M, Ishigami R, Hatori S, Ohashi K, Tanaka S 2003 Nucl. Instrum. Methods Phys. Res.. 209 362

    [16]

    Ito Y, Yasuda K, Ishigami R, Ohashi K, Tanaka S 2006 Nucl. Instrum. Methods Phys. Res.. 245 176

    [17]

    Qiu R 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [邱睿 2007 博士学位论文(北京: 清华大学)]

    [18]

    Ziegler J F, Ziegler M D, Biersack J P 2010 Nucl. Instrum. Methods Phys. Res.. 268 1818

    [19]

    Hashimoto N, Hunn J D, Byun T S, Mansur L K 2003 J. Nucl. Mater. 318 300

    [20]

    Tian J J, Yin H Q, Qu X H 2005 J. Magn. Mater. Dev. 36 12(in Chinese) [田建军, 尹海清, 曲选辉 2005 磁性材料及器件 36 12]

    [21]

    Li L Y, Yi J H, Huang B Y, Peng Y D 2005 Acta Metall. Sin. 41 791(in Chinese) [李丽娅, 易健宏, 黄伯云, 彭远东 2005 金属学报 41 791]

    [22]

    Weber W J 2000 Nucl. Instrum. Methods Phys. Res.. 166 98

    [23]

    Asano Y, Bizen T, Marechal X 2009 J. Synchrotron Rad. 16 317

    [24]

    Gao R S 2006 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [高润生 2006 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [25]

    Kahkonen O-P, Makinen S, Talvitie M, Manninen M 1992 J. Phys. Condens. Matter 4 1007

  • [1] Bai Ru-Xue, Guo Hong-Xia, Zhang Hong, Wang Di, Zhang Feng-Qi, Pan Xiao-Yu, Ma Wu-Ying, Hu Jia-Wen, Liu Yi-Wei, Yang Ye, Lyu Wei, Wang Zhong-Ming. High-energy proton radiation effect of Gallium nitride power device with enhanced Cascode structure. Acta Physica Sinica, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [2] Zhang Na, Liu Bo, Lin Li-Wei. Effect of He ion irradiation on microstructure and electrical properties of graphene. Acta Physica Sinica, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [3] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [4] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [5] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [6] Li Jie, Gao Jin, Wan Fa-Rong. The change of microstructure in deuteron-implanted aluminum under electron irradiation. Acta Physica Sinica, 2016, 65(2): 026102. doi: 10.7498/aps.65.026102
    [7] Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan. Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film. Acta Physica Sinica, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [8] Cao Yong-Ze, Li Guo-Jian, Wang Qiang, Ma Yong-Hui, Wang Hui-Min, He Ji-Cheng. Effects of high magnetic field on the microstructure and magnetic properties of Fe80Ni20 thin films with different thickness values. Acta Physica Sinica, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [9] Guan Qing-Feng, Lü Peng, Wang Xiao-Dong, Wan Ming-Zhen, Gu Qian-Qian, Chen Bo. Microstructures of Mo/Si multilayer mirror after proton irradiation. Acta Physica Sinica, 2012, 61(1): 016107. doi: 10.7498/aps.61.016107
    [10] Tang Jie, Yang Li-Rong, Wang Xiao-Jun, Zhang Lin, Wei Cheng-Fu, Chen Bo-Wei, Mei Yang. Effects of high pressure on microstructure and properties of bulk (PrNd)xAl0.6Nb0.5Cu0.15B1.05Fe97.7-x alloys. Acta Physica Sinica, 2012, 61(24): 240701. doi: 10.7498/aps.61.240701
    [11] Luo Qing-Hong, Lu Yong-Hao, Lou Yan-Zhi. Microstructure and mechanical properties of Ti-B-C-N nanocomposite coatings. Acta Physica Sinica, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [12] Wu Zhong-Hua, Sun Guang-Ai, Liu Yi, Chen Bo, Yan Guan-Yun, Wang Jie, Huang Chao-Qiang, Wu Er-Dong, Li Wu-Hui. Small angle X-ray scattering study of the microstructure and interface characteristics of single crystal superalloys during creep process. Acta Physica Sinica, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [13] Hou Zhao-Yang, Liu Li-Xia, Liu Rang-Su, Tian Ze-An. Simulation of evolution mechanisms of microstructures during rapid solidification of Al-Mg alloy melt. Acta Physica Sinica, 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [14] Hu Zhi-Hua, Lian Fa-Zeng, Zhu Ming-Gang, Li Wei. The microstructure and impact toughness of sintered Nd-Fe-B magnets. Acta Physica Sinica, 2008, 57(2): 1202-1206. doi: 10.7498/aps.57.1202
    [15] Li Xiu-Mei, Liu Tao, Guo Zhao-Hui, Zhu Ming-Gang, Li Wei. Effects of rare earth content on microstructure and magnetic properties of (Nd,Dy)-(Fe,Al)-B alloys. Acta Physica Sinica, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [16] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [17] Xu Jin-Feng, Dai Fu-Ping, Wei Bing-Bo. Phase separation of Cu-Pb monotectic alloy during rapid solidification. Acta Physica Sinica, 2007, 56(7): 3996-4003. doi: 10.7498/aps.56.3996
    [18] Zhu Cai-Zhen, Zhang Pei-Xin, Xu Qi-Ming, Liu Jian-Hong, Ren Xiang-Zhong, Zhang Qian-Ling, Hong Wei-Liang, Li Lin-Lin. Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al2O3-SiO2 structure. Acta Physica Sinica, 2006, 55(9): 4795-4802. doi: 10.7498/aps.55.4795
    [19] CHENG WEN-HAO, LI WEI, LI CHUAN-JIAN, PAN WEI. INVESTIGATION OF THE RELATIONSHIP BETWEEN THE CONSISTENCE AND MICROSTRUCTURE OF SINTERED Nd-Fe-B MAGNETS. Acta Physica Sinica, 2001, 50(11): 2226-2229. doi: 10.7498/aps.50.2226
    [20] DING RUI-QIN, WANG HAO, W.F.LAU, W.Y.CHEUNG, S.P.WONG, WANG NING-JUAN, YU YING-MIN. THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF THE NANOCOMPOSITE FILMS OF InP/SiO2. Acta Physica Sinica, 2001, 50(8): 1574-1579. doi: 10.7498/aps.50.1574
Metrics
  • Abstract views:  6544
  • PDF Downloads:  142
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2017
  • Accepted Date:  18 October 2017
  • Published Online:  05 January 2018

/

返回文章
返回