Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulation of skyrmion diameter in centrosymmetric frustrated magnet

Chi Xiao-Dan Hu Yong

Citation:

Modulation of skyrmion diameter in centrosymmetric frustrated magnet

Chi Xiao-Dan, Hu Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic skyrmions were first observed in a bulk B20 chiral magnet where the unit cell of the crystal lacks inversion symmetry, i. e. it is noncentrosymmetric, due to the Dzyaloshinskii-Moriya interaction (DMI). The breaking of structural inversion symmetry can also be achieved artificially in extremely thin FM layers adjacent to heavy elements, to induce a nonzero DMI. Many skyrmion properties in the DMI-based system are revealed such as the skyrmion diameters simply inversely proportional to the DMI constant. On the contrary, the triangular lattice, providing a simple realization of a high-symmetry system with six equivalent orientations for the helix, is centrosymmetric. In a two-dimensional triangular lattice magnet with the magnetocrystalline anisotropy perpendicular to the film plane, the magnetic frustration can arise from the coexistence of a nearest -neighbor ferromagnetic exchange interaction and a third-neighbor antiferromagnetic exchange interaction. When an external magnetic field is applied parallelly to the anisotropy, the non-coplanar alignments of spins are favored and even the topologically protected magnetic skyrmions also appear. Based on the Monte Carlo simulation, the dependence of magnetic-field-induced magnetic phase transitions in such magnetic frustrated magnets, including the magnetic phase of skyrmion crystals, and the skyrmion diameters on competing exchange interaction and magnetic field is studied. The results indicate that the diameters of magnetic skyrmions strongly depend on the competing exchange interactions and external magnetic field. Like the diameter features of magnetic skyrmions observed in the conventional DMI-based chiral magnets, the external magnetic field can magnetize the skyrmion periphery spins to reduce the skyrmion diameters. However, the enhanced antiferromagnetic exchange interaction can compress the entire skyrmions. In the framework of the spin wave theory and Monte Carlo simulation results, the diameters of magnetic skyrmions in exchange-interaction-frustrated systems are quantified. The skyrmion diameter decreases linearly with the increase of magnetic field for weak antiferromagnetic exchange interaction. With the increase of antiferromagnetic exchange interaction, the decrease of the skyrmion diameter with increasing magnetic field becomes slow, while the strong magnetic fields may rapidly reduce the skyrmion diameter. With the increase of antiferromagnetic exchange interaction, the maximum and median skyrmion diameters decrease to level-off roughly, while the minimum skyrmion diameters show a rapid decrease first and a great fluctuation later. The phenomena are explained through discussing the variations of configurations and magnetic energies of skyrmions. This work demonstrates the adjustability of skyrmion diameter in centrosymmetric frustrated magnet, which not only improves the understanding of origin of skyrmions, but also supports theoretically the development of new generation of skyrmion-based storage and logic devices.
      Corresponding author: Hu Yong, huyong@mail.neu.edu.cn
    • Funds: Project supported the financial supports by National Natural Science Foundation of China (Grant Nos. 11774045, 11204026, 11404053), China Scholarship Council (Grant No. 201606085010), Foundation Research Funds for Central Universities (Grant No. N150504008), and General Project of Liaoning Provincial Department of Education (Grant No. L20150172).
    [1]

    Bogdanov A N, Yablonskii D 1989 Zh. Eksp. Teor. Fiz. 95 178

    [2]

    Bogdanov A N, Hubert A 1994 J. Magn. Magn. Mater. 138 255

    [3]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [4]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [5]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [6]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nature Mater. 10 106

    [7]

    Yu X Z, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nature Commun. 3 988

    [8]

    Onose Y, Okamura Y, Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. Lett. 109 037603

    [9]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [10]

    Fert A, Cros V, Sampaio J 2013 Nature Nanotechnol. 8 152

    [11]

    Ding B, Wang W H 2018 Physics 47 15 (in Chinese) [丁贝,王文洪 2018 物理 47 15]

    [12]

    Dzyaloshinsky I 1958 J. Phys. Chem. Sol. 4 241

    [13]

    Moriya T 1960 Phys. Rev. 120 91

    [14]

    Nagaosa N, Tokura Y 2013 Nature Nanotechnol. 8 899

    [15]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144

    [16]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Yao Y, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274

    [17]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [18]

    Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887

    [19]

    Phatak C, Heinonen O, Graef M D, Petford-Long A 2016 Nano Lett. 16 4141

    [20]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nature Commun. 5 3198

    [21]

    Ding B, Li Y Q, Xu G Z, Wang Y, Hou Z P, Liu E K, Liu Z Y, Wu G H, Wang W H 2017 Appl. Phys. Lett. 110 092404

    [22]

    Chakraverty S, Matsuda T, Wadati H, Okamoto J, Yamasaki Y, Nakao H, Murakami Y, Ishiwata S, Kawasaki M, Taguchi Y, Tokura Y, Hwang H Y 2013 Phys. Rev. B 88 220405

    [23]

    Rzsa L, Dek A, Simon E, Yanes R, Udvardi L, Szunyogh L, Nowak U 2016 Phys. Rev. Lett. 117 157205

    [24]

    Rzsa L, Palots K, Dek A, Simon E, Yanes R, Udvardi L, Szunyogh L, Nowak U 2017 Phys. Rev. B 95 094423

    [25]

    Okubo T, Chung S, Kawamura H 2012 Phys. Rev. Lett. 108 017206

    [26]

    Hayami S, Lin S Z, Kamiya Y, Batista C D 2016 Phys. Rev. B 93 184413

    [27]

    Hu Y, Chi X D, Li X, Liu Y, Du A 2017 Sci. Rep. 7 16079

    [28]

    Lin S Z, Hayami S 2016 Phys. Rev. B 93 064430

    [29]

    Lin S Z, Hayami S, Batista C D 2016 Phys. Rev. Lett. 116 187202

    [30]

    Hayami S, Lin S Z, Kamiya Y, Batista C D 2016 Phys. Rev. B 94 174420

    [31]

    Leonov A O, Mostovoy M 2015 Nature Commun. 6 8275

    [32]

    Leonov A O, Mostovoy M 2017 Nature Commun. 8 14394

    [33]

    Yuan H Y, Gomonay O, Klui M 2017 Phys. Rev. B 96 134415

    [34]

    Zhang X C, Xia J, Zhou Y, Liu X X, Zhang H, Ezawa M 2017 Nature Commun. 8 1717

    [35]

    Gbel B, Mook A, Henk J, Mertig I 2017 Phys. Rev. B 95 094413

    [36]

    Hamamoto K, Ezawa M, Nagaosa N 2015 Phys. Rev. B 92 115417

    [37]

    Araki Y, Nomura K 2017 Phys. Rev. B 96 165303

    [38]

    Malottki S V, Dup B, Bessarab P F, Delin A, Heinze S 2017 Sci. Rep. 7 12299

    [39]

    Romming N, Kubetzka A, Hanneken C 2015 Phys. Rev. Lett. 114 177203

    [40]

    Simon E, Palots K, Rzsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410

    [41]

    Stoudenmire E M, Trebst S, Balents L 2009 Phys. Rev. B 79 214436

    [42]

    Day P, Dinsdale A, Krausz E R, Robbins D J 1976 J. Phys. C 9 2481

    [43]

    Heim B, Rnnow T F, Isakov S V, Troyer M 2015 Science 348 215

  • [1]

    Bogdanov A N, Yablonskii D 1989 Zh. Eksp. Teor. Fiz. 95 178

    [2]

    Bogdanov A N, Hubert A 1994 J. Magn. Magn. Mater. 138 255

    [3]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Bni P 2009 Science 323 915

    [4]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [5]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [6]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nature Mater. 10 106

    [7]

    Yu X Z, Kanazawa N, Zhang W, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nature Commun. 3 988

    [8]

    Onose Y, Okamura Y, Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. Lett. 109 037603

    [9]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A, Wiesendanger R 2013 Science 341 636

    [10]

    Fert A, Cros V, Sampaio J 2013 Nature Nanotechnol. 8 152

    [11]

    Ding B, Wang W H 2018 Physics 47 15 (in Chinese) [丁贝,王文洪 2018 物理 47 15]

    [12]

    Dzyaloshinsky I 1958 J. Phys. Chem. Sol. 4 241

    [13]

    Moriya T 1960 Phys. Rev. 120 91

    [14]

    Nagaosa N, Tokura Y 2013 Nature Nanotechnol. 8 899

    [15]

    Hou Z P, Ren W J, Ding B, Xu G Z, Wang Y, Yang B, Zhang Q, Zhang Y, Liu E K, Xu F, Wang W H, Wu G H, Zhang X X, Shen B G, Zhang Z D 2017 Adv. Mater. 29 1701144

    [16]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Yao Y, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274

    [17]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [18]

    Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887

    [19]

    Phatak C, Heinonen O, Graef M D, Petford-Long A 2016 Nano Lett. 16 4141

    [20]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nature Commun. 5 3198

    [21]

    Ding B, Li Y Q, Xu G Z, Wang Y, Hou Z P, Liu E K, Liu Z Y, Wu G H, Wang W H 2017 Appl. Phys. Lett. 110 092404

    [22]

    Chakraverty S, Matsuda T, Wadati H, Okamoto J, Yamasaki Y, Nakao H, Murakami Y, Ishiwata S, Kawasaki M, Taguchi Y, Tokura Y, Hwang H Y 2013 Phys. Rev. B 88 220405

    [23]

    Rzsa L, Dek A, Simon E, Yanes R, Udvardi L, Szunyogh L, Nowak U 2016 Phys. Rev. Lett. 117 157205

    [24]

    Rzsa L, Palots K, Dek A, Simon E, Yanes R, Udvardi L, Szunyogh L, Nowak U 2017 Phys. Rev. B 95 094423

    [25]

    Okubo T, Chung S, Kawamura H 2012 Phys. Rev. Lett. 108 017206

    [26]

    Hayami S, Lin S Z, Kamiya Y, Batista C D 2016 Phys. Rev. B 93 184413

    [27]

    Hu Y, Chi X D, Li X, Liu Y, Du A 2017 Sci. Rep. 7 16079

    [28]

    Lin S Z, Hayami S 2016 Phys. Rev. B 93 064430

    [29]

    Lin S Z, Hayami S, Batista C D 2016 Phys. Rev. Lett. 116 187202

    [30]

    Hayami S, Lin S Z, Kamiya Y, Batista C D 2016 Phys. Rev. B 94 174420

    [31]

    Leonov A O, Mostovoy M 2015 Nature Commun. 6 8275

    [32]

    Leonov A O, Mostovoy M 2017 Nature Commun. 8 14394

    [33]

    Yuan H Y, Gomonay O, Klui M 2017 Phys. Rev. B 96 134415

    [34]

    Zhang X C, Xia J, Zhou Y, Liu X X, Zhang H, Ezawa M 2017 Nature Commun. 8 1717

    [35]

    Gbel B, Mook A, Henk J, Mertig I 2017 Phys. Rev. B 95 094413

    [36]

    Hamamoto K, Ezawa M, Nagaosa N 2015 Phys. Rev. B 92 115417

    [37]

    Araki Y, Nomura K 2017 Phys. Rev. B 96 165303

    [38]

    Malottki S V, Dup B, Bessarab P F, Delin A, Heinze S 2017 Sci. Rep. 7 12299

    [39]

    Romming N, Kubetzka A, Hanneken C 2015 Phys. Rev. Lett. 114 177203

    [40]

    Simon E, Palots K, Rzsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410

    [41]

    Stoudenmire E M, Trebst S, Balents L 2009 Phys. Rev. B 79 214436

    [42]

    Day P, Dinsdale A, Krausz E R, Robbins D J 1976 J. Phys. C 9 2481

    [43]

    Heim B, Rnnow T F, Isakov S V, Troyer M 2015 Science 348 215

  • [1] Zhang Xian, Liu Shi-Chang, Wei Jun-Xia, Li Shu, Wang Xin, Shangguan Dan-Hua. Monte Carlo global variance reduction method combining source bias and weight window. Acta Physica Sinica, 2024, 73(4): 042801. doi: 10.7498/aps.73.20231493
    [2] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [3] Deng Li, Li Rui, Wang Xin, Fu Yuan-Guang. Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis. Acta Physica Sinica, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [4] Shangguan Dan-Hua, Ji Zhi-Cheng, Deng Li, Li Rui, Li Gang, Fu Yuan-Guang. New strategy for global tallying in Monte Carlo criticality calculation. Acta Physica Sinica, 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [5] Li Shu. Photon spectrum and angle distribution for photon scattering with relativistic Maxwellian electrons. Acta Physica Sinica, 2019, 68(1): 015201. doi: 10.7498/aps.68.20181796
    [6] Chen Zhong, Zhao Zi-Jia, Lü Zhong-Liang, Li Jun-Han, Pan Dong-Mei. Numerical simulation of deuterium-tritium fusion reaction rate in laser plasma based on Monte Carlo-discrete ordinate method. Acta Physica Sinica, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [7] Li Hong, Ai Qian-Wen, Wang Peng-Jun, Gao He-Bei, Cui Yi, Luo Meng-Bo. Computer simulation of adsorption properties of polymer on surface under external driving force. Acta Physica Sinica, 2018, 67(16): 168201. doi: 10.7498/aps.67.20180468
    [8] Li Shu. Monte Carlo method for computing relativistic photon-Maxwellian electron scattering cross sections. Acta Physica Sinica, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [9] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [10] Zhang Ming-Liang, Cai Li, Yang Xiao-Kuo, Qin Tao, Liu Xiao-Qiang, Feng Chao-Wen, Wang Sen. On-chip clocking for exchange-interaction-based nanomagnetic logic circuits. Acta Physica Sinica, 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [11] Wen De-Zhi, Zhuo Ren-Hong, Ding Da-Jie, Zheng Hui, Cheng Jing, Li Zheng-Hong. Generation of correlated pseudorandom variables in Monte Carlo simulation. Acta Physica Sinica, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [12] Zhang Bao-Wu, Zhang Ping-Ping, Ma Yan, Li Tong-Bao. Simulations of one-dimensional transverse laser cooling of Cr atomic beam with Monte Carlo method. Acta Physica Sinica, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [13] Zhao Xue-Feng, Li San-Wei, Jiang Gang, Wang Chuan-Ke, Li Zhi-Chao, Hu Feng, Li Chao-Guang. Monte Carlo simulation of hard X-ray producedby suprathermal electrons interactionwith golden hohlraum targets. Acta Physica Sinica, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [14] Jin Xiao-Lin, Huang Tao, Liao Ping, Yang Zhong-Hai. The particle-in-cell simulation and Monte Carlo collision simulation of the interaction between electrons and microwave in electron cyclotron resonance discharge. Acta Physica Sinica, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [15] Zheng Xiao-Ping, Zhang Pei-Feng, Fan Duo-Wang. A study based on diffusion theory for exchange-reaction of RLA model. Acta Physica Sinica, 2008, 57(1): 425-429. doi: 10.7498/aps.57.425
    [16] Sun Xian-Ming, Han Yi-Ping, Shi Xiao-Wei. Monte Carlo simulation of backscattering by a melting layer of precipitation. Acta Physica Sinica, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [17] Monte Carlo simulation of Kα source produced by ultrashort and ultrahigh laser interaction with Cu target. Acta Physica Sinica, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [18] Zhang Guo-Ying, Xia Tian, Cheng Yong, Xue Liu-Ping, Zhang Xue-Long. Role of exchange interaction in the magnetic and magneto-optic properties of CeF3 crystal. Acta Physica Sinica, 2006, 55(6): 3091-3094. doi: 10.7498/aps.55.3091
    [19] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [20] Xu Rong-Qing, Wang Jia-Fu, Zhou Qing-Chun. . Acta Physica Sinica, 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
Metrics
  • Abstract views:  7007
  • PDF Downloads:  406
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2017
  • Accepted Date:  07 March 2018
  • Published Online:  05 July 2018

/

返回文章
返回