-
Alkali metal has predicted to be a promising candidate for decorating silicene surface to obtain the high hydrogen storage capacity, owing to their physical properties of lightweight, lower cohesive energy, and appropriate strength of the interaction with H2 molecules. However, though the high potential in hydrogen storage of alkali metal adatoms-decorated silicene under the fixed adatom adsorption component is well known, the evidence for the hydrogen storage capacity of alkali metal adatoms-decorated silicene under different adatom adsorption components remains largely unexplored, which may be of great significance to make the most advantages of alkali metal adatoms-decorated silicene in hydrogen storage aspects. Herein, according to the first-principles calculation corrected by the van der Waals effect, we take Li-decorated silicene for example and perform the detailed study of the geometry structure, the stability and the hydrogen storage capacity of silicene under different Li adsorption components (LixSi1-x), aiming to maximize the hydrogen storage performance of Li-decorated silicene. The results show that the preferred site of Li changes from the hollow site to the valley site as the Li component increases from 0.11 to 0.50, and binding energy of Li is always greater than the corresponding cohesive energy, showing the high stability of Li-decorated silicene and the feasibility of the method to obtain a higher hydrogen storage capacity by increasing the Li component. The hydrogen storage of silicene under different Li adsorption components is investigated by the sequential addition of H2 molecules nearby Li atoms in a stepwise manner. It can be observed that the hydrogen storage capacity of Li-decorated silicene increases and the average adsorption energy decreases with the increase of the Li component. The corresponding hydrogen storage capacities of Li0.11Si0.89, Li0.20Si0.80, Li0.33Si0.67, Li0.43Si0.57 can reach up to 2.54 wt%, 4.82 wt%, 6.00 wt% and 9.58 wt% with 0.58 eV/H2, 0.47 eV/H2, 0.54 eV/H2 and 0.41 eV/H2 average adsorption energy, respectively. When the Li component increases up to 0.50, Li atoms are saturated with a maximum hydrogen storage capacity of 11.46 wt% and an average adsorption energy of 0.34 eV/H2, which well meet the hydrogen storage standard set by the U.S. Department of Energy and mean that the hydrogen storage can be theoretically improved by increasing the Li adsorption component to a saturated level. Furthermore, we analyze the Mulliken charge population, the charge density difference and the density of states, showing that the charge-induced electrostatic interaction and the orbital hybridization are the key factors for the hydrogen adsorption of Li-decorated silicene. Our results may enhance our fundamental understanding of the hydrogen storage mechanism and explore the applications in areas of hydrogen storage for Li-decorated silicene, which are of great importance for the usage of hydrogen in the future.
-
Keywords:
- Li-decorated silicene /
- hydrogen storage /
- adsorption component /
- first-principles
[1] Cheng J Y, Chan M K Y, Lilley C M 2016 Appl. Phys. Lett. 109 133111
[2] Zhou J Q, Bournel A, Wang Y, Lin X Y, Zhang Y, Zhao W S 2017 Appl. Phys. Lett. 111 182408
[3] Yang S, Cheng P, Chen L, Wu K H 2017 Acta Phys. Sin. 66 216805 (in Chinese)[杨硕, 程鹏, 陈岚, 吴克辉 2017 物理学报 66 216805]
[4] Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2016 J. Phys. Chem. C 120 25256
[5] Li C, Yang S X, Li S S, Xia J B, Li J B 2013 J. Phys. Chem. C 117 483
[6] Li F, Zhang C W, Ji W X, Zhao M W 2015 Phys. Status Solidi B 252 2072
[7] Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24
[8] Hussain T, Chakraborty S, De Sarkar A, Johansson B, Ahuja R 2014 Appl. Phys. Lett. 105 123903
[9] Wang Y S, Zheng R, Gao H Y, Zhang J, Xu B, Sun Q, Jia Y 2014 Int. J. Hydrogen Energy 39 14027
[10] Wang J, Li J B, Li S S, Liu Y 2013 J. Appl. Phys. 114 124309
[11] Ariharan A, Viswanathan B, Nandhakumar V 2017 Graphene 6 41
[12] Lochan R C, Head Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357
[13] Song E H, Yoo S H, Kim J J, Lai S W, Jiang Q, Cho S O 2014 Phys. Chem. Chem. Phys. 16 23985
[14] Li F, Zhang C W, Luan H X, Wang P J 2013 J. Nanopart. Res. 15 1972
[15] Molle A, Grazianetti C, Cinquanta E 2016 ECS Trans. 75 703
[16] Zhong S Y, Ning F H, Rao F Y, Lei X L, Wu M S, Zhou L 2016 Int. J. Mod. Phys. B 30 1650176
[17] Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900
[18] Zhou C Y, Szpunar J A 2016 ACS Appl. Mater. Interfaces 8 25933
[19] Ma L, Zhang J M, Xu K W, Ji V 2015 Physica E 66 40
[20] Fair K M, Cui X Y, Li L, Shieh C C, Zheng R K, Liu Z W, Delley B, Ford M J, Ringer S P, Stampfl C 2013 Phys. Rev. B 87 014102
[21] Wang Y S, Li M, Wang F, Sun Q, Jia Y 2012 Phys. Lett. A 376 631
[22] Hussain T, Chakraborty S, Ahuja R 2013 ChemPhys-Chem 14 3463
[23] Delley B 2000 J. Chem. Phys. 113 7756
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4978
[25] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[26] Grimme S 2006 J. Comput. Chem. 27 1787
[27] Chadi D J 1977 Phys. Rev. B 16 1746
[28] Huang Y P, Yuan J M, Guo G, Mao Y L 2015 Acta Phys. Sin. 64 013101 (in Chinese)[黄艳平, 袁健美, 郭刚, 毛宇亮 2015 物理学报 64 013101]
[29] Tritsaris G A, Kaxiras E, Meng S, Wang E G 2013 Nano Lett. 13 2258
[30] Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101
-
[1] Cheng J Y, Chan M K Y, Lilley C M 2016 Appl. Phys. Lett. 109 133111
[2] Zhou J Q, Bournel A, Wang Y, Lin X Y, Zhang Y, Zhao W S 2017 Appl. Phys. Lett. 111 182408
[3] Yang S, Cheng P, Chen L, Wu K H 2017 Acta Phys. Sin. 66 216805 (in Chinese)[杨硕, 程鹏, 陈岚, 吴克辉 2017 物理学报 66 216805]
[4] Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2016 J. Phys. Chem. C 120 25256
[5] Li C, Yang S X, Li S S, Xia J B, Li J B 2013 J. Phys. Chem. C 117 483
[6] Li F, Zhang C W, Ji W X, Zhao M W 2015 Phys. Status Solidi B 252 2072
[7] Zhao J J, Liu H S, Yu Z M, Quhe R G, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24
[8] Hussain T, Chakraborty S, De Sarkar A, Johansson B, Ahuja R 2014 Appl. Phys. Lett. 105 123903
[9] Wang Y S, Zheng R, Gao H Y, Zhang J, Xu B, Sun Q, Jia Y 2014 Int. J. Hydrogen Energy 39 14027
[10] Wang J, Li J B, Li S S, Liu Y 2013 J. Appl. Phys. 114 124309
[11] Ariharan A, Viswanathan B, Nandhakumar V 2017 Graphene 6 41
[12] Lochan R C, Head Gordon M 2006 Phys. Chem. Chem. Phys. 8 1357
[13] Song E H, Yoo S H, Kim J J, Lai S W, Jiang Q, Cho S O 2014 Phys. Chem. Chem. Phys. 16 23985
[14] Li F, Zhang C W, Luan H X, Wang P J 2013 J. Nanopart. Res. 15 1972
[15] Molle A, Grazianetti C, Cinquanta E 2016 ECS Trans. 75 703
[16] Zhong S Y, Ning F H, Rao F Y, Lei X L, Wu M S, Zhou L 2016 Int. J. Mod. Phys. B 30 1650176
[17] Hussain T, Kaewmaraya T, Chakraborty S, Ahuja R 2013 Phys. Chem. Chem. Phys. 15 18900
[18] Zhou C Y, Szpunar J A 2016 ACS Appl. Mater. Interfaces 8 25933
[19] Ma L, Zhang J M, Xu K W, Ji V 2015 Physica E 66 40
[20] Fair K M, Cui X Y, Li L, Shieh C C, Zheng R K, Liu Z W, Delley B, Ford M J, Ringer S P, Stampfl C 2013 Phys. Rev. B 87 014102
[21] Wang Y S, Li M, Wang F, Sun Q, Jia Y 2012 Phys. Lett. A 376 631
[22] Hussain T, Chakraborty S, Ahuja R 2013 ChemPhys-Chem 14 3463
[23] Delley B 2000 J. Chem. Phys. 113 7756
[24] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B 48 4978
[25] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[26] Grimme S 2006 J. Comput. Chem. 27 1787
[27] Chadi D J 1977 Phys. Rev. B 16 1746
[28] Huang Y P, Yuan J M, Guo G, Mao Y L 2015 Acta Phys. Sin. 64 013101 (in Chinese)[黄艳平, 袁健美, 郭刚, 毛宇亮 2015 物理学报 64 013101]
[29] Tritsaris G A, Kaxiras E, Meng S, Wang E G 2013 Nano Lett. 13 2258
[30] Liu C S, Zeng Z 2010 Appl. Phys. Lett. 96 123101
Catalog
Metrics
- Abstract views: 6444
- PDF Downloads: 154
- Cited By: 0