Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of Tl-1223 superconducting thin films by rapidly heating-up sintering technology

Xie Qing-Lian Su Ling-Ling Jiang Yan-Ling Tang Ping-Ying Liu Li-Qin Yue Hong-Wei Chen Ming-Xian Huang Guo-Hua

Citation:

Growth of Tl-1223 superconducting thin films by rapidly heating-up sintering technology

Xie Qing-Lian, Su Ling-Ling, Jiang Yan-Ling, Tang Ping-Ying, Liu Li-Qin, Yue Hong-Wei, Chen Ming-Xian, Huang Guo-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to high critical temperature (125 K) and high upper critical field, TlBa2Ca2Cu3O9 (Tl-1223) superconductor is a kind of superconducting power transmission material working at liquefied natural gas temperature, and it has a great potential application value in the strong and weak electric field. In this work, the Tl-1223 superconducting films are fabricated by rapidly heating-up sintering technology (RHST) on (00l) lanthanum aluminate substrates. The Tl-Ba-Ca-Cu-O target is used as a sputtering source to deposit the precursor films by the radio-frequency magnetron sputtering technique. The Tl-contained pellets, named annealing targets, are fabricated by the solid-state reaction of stoichiometric quantities of Tl2O3, BaO2, CaO and CuO powders with an initial cation ratio of m Tl:Ba:Ca:Cu=0.4-1.8:2:2:3. The amorphous precursors together with the annealing target providing Tl source are sealed in a silver foil and annealed at 820℃ for 5 min in argon atmosphere, then converted into Tl-1223 superconducting phase. The heating rates are set at 2.5℃/s from room temperature to 350℃, 5℃/s from 350℃ to 650℃, and 35℃/s from 650℃ to 820℃, respectively. The prepared films are characterized by X-ray diffraction and scanning electron microscope. In the conventional low heating rate process, all of the precursor films sintered together with the annealing targets containing different Tl content are first converted into Tl-2212 superconducting phase. That is because the sample residence time in the phase transition temperature range of Tl-2212 is longer, while the phase-formed temperature of Tl-2212 is lower than that of Tl-1223. In the RHST, when the metal ion molar ratio of Tl to Ba in the annealing target is 1.8:2, the main phase of the film is (00l)-oriented Tl-2212. In addition, the film also contains a small number of Tl-2223 grains. On reducing the ratio to 1:2, the film is composed of Tl-1212, Tl-2212, Tl-1223 and Tl-2223 grains. As the ratio decreases to 0.8:2, the film contains the (00l)-oriented Tl-1223 grains and traces of Tl-2223 grains. With the ratio decreasing to 0.4:2, purely c-axis oriented Tl-1223 film is obtained. The critical transition temperature Tc onset of the as-grown film is only 103 K. The film annealed again in oxygen gas has a dense crystal structure and excellent electrical properties. The Tc onset of the sample is about 116 K, and the critical current density Jc is about 1.5 MA/cm2 (77 K, 0 T). The experimental results show that the new sintering process to grow Tl-based films has several advantages such as the short processing cycles, less raw-material consumption, and low production cost.
      Corresponding author: Jiang Yan-Ling, gxjyl@126.com;chmx0088@sina.com ; Chen Ming-Xian, gxjyl@126.com;chmx0088@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51062001, 11264009), the Natural Science Foundation of Guangxi, China (Grant No. 2015jjDA10001), the Scientific Research Foundation of the Education Department of Guangxi, China (Grant No. KY2015ZD076), and the Open Project of Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, China (Grant No. DGN201702).
    [1]

    Fiegelman M V, Geshkenbein V G, Larkin A I 1990 Physica C 167 177

    [2]

    Jergel M, Conde Gallardo A, Falcony Guajardo C, Strbik V 1996 Supercond. Sci. Technol. 9 427

    [3]

    Nabatame T, Saito Y, Aihara K, Kamo T, Matsuda S P 1996 Supercond. Sci. Technol. 9 17

    [4]

    Crisana A, Iyo A, Tanaka Y 2003 Appl. Phys. Lett. 83 506

    [5]

    Profulla C K 2014 Int. J. Engineer. Innovat. Res. 3 850

    [6]

    Gao X X, Xie W, Wang Z, Zhao X J, He M, Zhang X, Yan S L, Ji L 2014 J. Supercond. Nov. Magn. 27 1665

    [7]

    Xie Q L, Wang Z, Huang G H, Wang X H, You F, Ji L, Zhao X J, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7958 (in Chinese) [谢清连, 王争, 黄国华, 王向红, 游峰, 季鲁, 赵新杰, 方兰, 阎少林 2009 物理学报 58 7958]

    [8]

    Xie Q L, You F, Meng Q H, Ji L, Zhou T G, Zhao X J, Fang L, Yan S L 2010 J. Synth. Cryst. 39 1539 (in Chinese) [谢清连, 游峰, 蒙庆华, 季鲁, 周铁戈, 赵新杰, 方兰, 阎少林 2010 人工晶体学报 39 1539]

    [9]

    Sundaresan A, Asada H, Crisan A, Nie J C, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S 2003 IEEE Trans. Appl. Supercond. 13 2913

    [10]

    Ji L, Yan S L, Xie Q L, You S T, Zhou T G, He M, Zuo T, Zhang X, Li J L, Zhao X J, Fang L 2007 Supercond. Sci. Technol. 20 1173

    [11]

    Badica P, Sundaresan A, Crisan A, Nie J C, Hirai M, Fujiwara S, Kito H, Ihara H 2003 Physica C 383 482

    [12]

    Xuan H N, Beauquis S, Gales P, Chadouet P, Jimenez C, Weiss F, Decroux M, Therasse M, Strbk V, Polk M, Chromi S K 2006 J. Phys.: Conference Series 43 281

    [13]

    Prazuch J, Konig W T, Gritzner G, Przybylski K 2000 Physica C 331 227

    [14]

    Phok S, Galez Ph, Jorda J L, Supardi Z, Barros D D, Odier P, Sin A, Weiss F 2002 Physica C 372376 876

    [15]

    Bramley A P, Connor J D O, Grovenor C R M 1999 Supercond. Sci. Technol. 12 R57

    [16]

    Shakil A, Nawazish A K, Mumtaz M, Khurram A A 2015 Radiat. Phys. Chem. 112 145

    [17]

    Abou Aly A I, Ibrahim I H, Awad R, El-Harizy A, Khalaf A 2010 J. Supercond. Nov. Magn. 23 1325

    [18]

    You F, Ji L, Wang Z, Xie Q L, Zhao X J, Yue H W, Fang L, Yan S L 2010 Supercond. Sci. Technol. 23 065002

    [19]

    Siegal M P, Overmyer D L, Venturini E L, Newcomer P P, Dunn R, Dominguez F, Padilla R R, Sokolowski S S 1997 IEEE Trans. Appl. Supercond. 7 1881

    [20]

    Zhao X J, Ji L, Chen E, Zuo T, Zhou T G, Chen S, Yan S L, Fang L, Zuo X 2005 Chin. J. Low Temperature Phys. 27 629 (in Chinese) [赵新杰, 季鲁, 陈恩, 左涛, 周铁戈, 陈思, 阎少林, 方兰, 左旭 2005 低温物理学报 27 629]

  • [1]

    Fiegelman M V, Geshkenbein V G, Larkin A I 1990 Physica C 167 177

    [2]

    Jergel M, Conde Gallardo A, Falcony Guajardo C, Strbik V 1996 Supercond. Sci. Technol. 9 427

    [3]

    Nabatame T, Saito Y, Aihara K, Kamo T, Matsuda S P 1996 Supercond. Sci. Technol. 9 17

    [4]

    Crisana A, Iyo A, Tanaka Y 2003 Appl. Phys. Lett. 83 506

    [5]

    Profulla C K 2014 Int. J. Engineer. Innovat. Res. 3 850

    [6]

    Gao X X, Xie W, Wang Z, Zhao X J, He M, Zhang X, Yan S L, Ji L 2014 J. Supercond. Nov. Magn. 27 1665

    [7]

    Xie Q L, Wang Z, Huang G H, Wang X H, You F, Ji L, Zhao X J, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7958 (in Chinese) [谢清连, 王争, 黄国华, 王向红, 游峰, 季鲁, 赵新杰, 方兰, 阎少林 2009 物理学报 58 7958]

    [8]

    Xie Q L, You F, Meng Q H, Ji L, Zhou T G, Zhao X J, Fang L, Yan S L 2010 J. Synth. Cryst. 39 1539 (in Chinese) [谢清连, 游峰, 蒙庆华, 季鲁, 周铁戈, 赵新杰, 方兰, 阎少林 2010 人工晶体学报 39 1539]

    [9]

    Sundaresan A, Asada H, Crisan A, Nie J C, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S 2003 IEEE Trans. Appl. Supercond. 13 2913

    [10]

    Ji L, Yan S L, Xie Q L, You S T, Zhou T G, He M, Zuo T, Zhang X, Li J L, Zhao X J, Fang L 2007 Supercond. Sci. Technol. 20 1173

    [11]

    Badica P, Sundaresan A, Crisan A, Nie J C, Hirai M, Fujiwara S, Kito H, Ihara H 2003 Physica C 383 482

    [12]

    Xuan H N, Beauquis S, Gales P, Chadouet P, Jimenez C, Weiss F, Decroux M, Therasse M, Strbk V, Polk M, Chromi S K 2006 J. Phys.: Conference Series 43 281

    [13]

    Prazuch J, Konig W T, Gritzner G, Przybylski K 2000 Physica C 331 227

    [14]

    Phok S, Galez Ph, Jorda J L, Supardi Z, Barros D D, Odier P, Sin A, Weiss F 2002 Physica C 372376 876

    [15]

    Bramley A P, Connor J D O, Grovenor C R M 1999 Supercond. Sci. Technol. 12 R57

    [16]

    Shakil A, Nawazish A K, Mumtaz M, Khurram A A 2015 Radiat. Phys. Chem. 112 145

    [17]

    Abou Aly A I, Ibrahim I H, Awad R, El-Harizy A, Khalaf A 2010 J. Supercond. Nov. Magn. 23 1325

    [18]

    You F, Ji L, Wang Z, Xie Q L, Zhao X J, Yue H W, Fang L, Yan S L 2010 Supercond. Sci. Technol. 23 065002

    [19]

    Siegal M P, Overmyer D L, Venturini E L, Newcomer P P, Dunn R, Dominguez F, Padilla R R, Sokolowski S S 1997 IEEE Trans. Appl. Supercond. 7 1881

    [20]

    Zhao X J, Ji L, Chen E, Zuo T, Zhou T G, Chen S, Yan S L, Fang L, Zuo X 2005 Chin. J. Low Temperature Phys. 27 629 (in Chinese) [赵新杰, 季鲁, 陈恩, 左涛, 周铁戈, 陈思, 阎少林, 方兰, 左旭 2005 低温物理学报 27 629]

  • [1] Xia Chang-Ming, Lu Jia-Ao, Huang Zhuo-Yuan, Liu Jian-Tao, Hou Zhi-Yun, Zhou Gui-Yao. Preparation and optical properties of thulium doped lanthanum aluminum silicate glass photonic crystal fiber. Acta Physica Sinica, 2023, 72(20): 204206. doi: 10.7498/aps.72.20230766
    [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] Fei Xiao, Luo Bing-Cheng, Jin Ke-Xin, Chen Chang-Le. Electrical and optical behaviors of La-doped BaSnO3 thin film. Acta Physica Sinica, 2015, 64(20): 207303. doi: 10.7498/aps.64.207303
    [4] Wang Jian-Bo, Qian Jin, Yin Cong, Shi Chun-Ying, Lei Ming. Method of identifying the relative position between standing wave of laser light and substrate in atom lithography. Acta Physica Sinica, 2012, 61(19): 190601. doi: 10.7498/aps.61.190601
    [5] Huang Xu-Dong, Feng Yu-Jun, Tang Shuai. The influence of variable quantity of polarization on the current intensity of the electron emission from La-doped Pb(Zr, Sn, Ti)O3 ferroelectric cathode. Acta Physica Sinica, 2012, 61(8): 087702. doi: 10.7498/aps.61.087702
    [6] You Feng, Ji Lu, Xie Qing-Lian, Wang Zheng, Yue Hong-Wei, Zhao Xin-Jie, Fang Lan, Yan Shao-Lin. Fabrication and properties of large area Tl2Ba2CaCu2O8 superconducting thin film on sapphire substrate. Acta Physica Sinica, 2010, 59(7): 5035-5043. doi: 10.7498/aps.59.5035
    [7] Wang Zheng, Yue Hong-Wei, Zhou Tie-Ge, Zhao Xin-Jie, He Ming, Xie Qing-Lian, Fang Lan, Yan Shao-Lin. Dynamic characteristics of Tl-2212 bicrystal Josephson junctions on SrTiO3 substrates and the effect of noise on it. Acta Physica Sinica, 2009, 58(10): 7216-7221. doi: 10.7498/aps.58.7216
    [8] Li Xiao-Yan, Zheng Zhi-Qiang, Feng Zhuo-Hong, Liu Jing, Jiang Cui-Hua, Kong Ling-Kai, Ming Hai. Analysis of the dynamics of upconversion in erbium-doped transparent lead lanthanum zirconate titanate ceramic. Acta Physica Sinica, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [9] Liu Ming, Liu Zhi-Wen, Gu Jian-Feng, Qin Fu-Wen, Ma Chun-Yu, Zhang Qing-Yu. Effect of sapphire substrate pre-treatment on the growth of ZnO films. Acta Physica Sinica, 2008, 57(2): 1133-1140. doi: 10.7498/aps.57.1133
    [10] Xie Qing-Lian, Yan Shao-Lin, Zhao Xin-Jie, Fang Lan, Ji Lu, Zhang Yu-Ting, You Shi-Tou, Li Jia-Lei, Zhang Xu, Zhou Tie-Ge, Zuo Tao, Yue Hong-Wei. Effects of annealing of r-cut sapphire substrate on its surface morphology and the growth of CeO2 buffer layers and the Tl-2212 superconducting films. Acta Physica Sinica, 2008, 57(1): 519-525. doi: 10.7498/aps.57.519
    [11] Gu Jian-Feng, Liu Zhi-Wen, Liu Ming, Fu Wei-Jia, Ma Chun-Yu, Zhang Qing-Yu. Two-step growth of ZnO films deposited by reactive radio-frequency magnetron sputtering on Si(001) substrate. Acta Physica Sinica, 2007, 56(4): 2369-2376. doi: 10.7498/aps.56.2369
    [12] Zeng Xiong-Hui, Zhao Guang-Jun, Zhang Lian-Han, He Xiao-Ming, Hang-Yin, Li Hong-Jun, Xu Jun. The energy levels structure and fluorescence properties of Ce3+ in LaAlO3 single crystals. Acta Physica Sinica, 2005, 54(2): 612-616. doi: 10.7498/aps.54.612
    [13] Hu Ying, Zhang Cun-Lin, Shen Jing-Ling, X. C. Zhang. Time-domain terahertz spectroscopy of (100) MgO and (100) LaAlO3 substrates. Acta Physica Sinica, 2004, 53(6): 1772-1776. doi: 10.7498/aps.53.1772
    [14] Yi Chang-Hong, Hu Fang-Ren, Zhang Qing-Gang, Chen Ying-Fei, Xu Xiao-Ping, Zheng Dong-Ning. Fabrication of Tl-2212 superconducting thin films by a two-step procedure with post-annealing in a closed container. Acta Physica Sinica, 2004, 53(10): 3525-3529. doi: 10.7498/aps.53.3525
    [15] Chen Yi-Kuang, Lin Kui-Xun, Luo Zhi, Liang Rui-Sheng, Zhou Fu-Fang. Aluminum-induced rapid crystallization of a-Si films at low temperatures in an electric field and microstructure analyses of the crystallized films. Acta Physica Sinica, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [16] Wang Qiang, Shen Ming-Rong, Hou Fang, Gan Zhao-Qiang. The effect of baking temperature on the crystal structure and ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by sol-gel processing. Acta Physica Sinica, 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [17] SONG ZHI-TANG, REN WEI, ZHANG LIANG-YING, YAO XI. A STUDY OF ABNORMAL ELECTRIC PROPERTIES OF LEAD LANTHANUM TITANATE THIN FILMS CAUSED BY EXCESS PbO. Acta Physica Sinica, 1997, 46(9): 1849-1862. doi: 10.7498/aps.46.1849
    [18] LI YANG, CAO GUO-HUI, WANG YUN-BO, MA QING-ZHU, XIONG XIAO-TAO, MA RU-ZHANG, CHEN NING, GUO YING-HUAN, XU ZHU-AN, ZHANG XIAO-JUN, WANG JIN-SONG, JIAO ZHENG-KUAN, PENG HUO-TIAN, ZHOU SI-HAI. EXTRA OXYGEN DEFECT INDUCED BY Fe-DOPING IN Tl-SYSTEM SUPERCONDUCTOR. Acta Physica Sinica, 1996, 45(9): 1570-1577. doi: 10.7498/aps.45.1570
    [19] Chen Zu-Yao, Tang Kai-Bin, Qian Yi-Tai, Sheng Zheng-Zhi, Wang Lu-Min. . Acta Physica Sinica, 1995, 44(5): 795-805. doi: 10.7498/aps.44.795
    [20] Cai Wei, Wu Zi-qin. THE STRUCTURAL CHANGES OF Ag-Sn BIMETALLIC FILMS DURING HEATING. Acta Physica Sinica, 1982, 31(10): 1380-1386. doi: 10.7498/aps.31.1380
Metrics
  • Abstract views:  5600
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  27 December 2017
  • Accepted Date:  18 April 2018
  • Published Online:  05 July 2018

/

返回文章
返回