Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of surge movement in non-uniform water flow on performance of underwater quantum communication

Nie Min Pan Yue Yang Guang Sun Ai-Jing Yu Sai-Ya Zhang Mei-Ling Pei Chang-Xing

Citation:

Influence of surge movement in non-uniform water flow on performance of underwater quantum communication

Nie Min, Pan Yue, Yang Guang, Sun Ai-Jing, Yu Sai-Ya, Zhang Mei-Ling, Pei Chang-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum communication is brand new way of communication in which quantum entanglement is used to transmit information. It is an interdisciplinary subject combining quantum informatics with modern communication theory. Motivated by the communication requirements for underwater sensor networks, submarines, etc., underwater optical communication has been developing rapidly in recent years due to the ideal information security of quantum communication. However, the research on the performance of underwater quantum communication in sea has not yet been fully developed because of a series of factors such as surge, salinity and seaweed and so on. In this paper, the influence of surge in non-uniform water flow on the underwater quantum communication is studied theoretically and experimentally. Firstly, a new Boussinesq equation with a given flow function is derived based on the horizontal and vertical wave velocity of the free surface to represent the free surface boundary conditions. On the other hand, In view of the nonlinear motion of movement, the complexity of change and the randomness of the distribution, the spectrum is used for numerically calculating the surge. The characteristics of wave motion are described by wave height, period and wavelength. Secondly, the influence of surge on the entanglement of underwater quantum channel is analyzed. It is proved that the wave height of surge and the change of the cycle affect quantum communication due to the destruction of the quantum coherence and the reduction in quantum entanglement degree. Thirdly, the influence of surge motion on the quantum channel capacity is studied. The influence of the relation between the wavelength and the transmission cycle on the quantum channel capacity is simulated. The relationship between the physical characteristics of surge wave and the capacity of depolarized channel is established. Fourthly, the influence of surge motion on error rate in quantum key distribution is studied. The simulation results show that when the sea surface wind speed changes in a range of 0-20.5 m/s, the propagation cycle is increased gradually. The channel entanglement is increased from 0.0012 to 0.8426, and the channel capacity is reduced from 0.8736 to 0.1024. In the key distribution process, the quantum bit error rate increases from 0.1651 to 0.4812. Therefore, in underwater quantum communication, the parameters of the system should be adjusted adaptively according to the varying degree of the surge movement.
      Corresponding author: Pan Yue, 1601210022@stu.xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172071, 61201194), the Natural Science Research Foundation of Shaanxi Province, China (Grant No. 2014JQ8318), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).
    [1]

    Peng C Z, Yang T, Bao X H 2005 Phys. Rev. Lett. 94 4

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nat. Photon. 4 376

    [3]

    Yin J, Ren J G, Lu H 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K 2013 Nature Photon. 7 387

    [5]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William N, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303 (in Chinese) [聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303]

    [8]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 020303 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 020303]

    [9]

    Yoon S B, Liu P L F 1989 J. Fluid Mech. 205 397

    [10]

    Li Y C, Zhang Y G 1996 J. Hydrody. 11 205 (in Chinese) [李玉成, 张永刚 1996 水动力学研究与进展 11 205]

    [11]

    Sverdrup H U, Munk W H 1947 J. Hydrographic Office 601 44

    [12]

    Sverdrup H U 1947 American Geophysical Union. 28 407

    [13]

    Bretschneider C L 1952 American Geophysical Union. 33 381

    [14]

    Wang Y L, Zhang H S, Miao G P 2005 China Ocean Engineering 19 49

    [15]

    Higgins M S 1975 J. Geopbys. Res. 80 2688

    [16]

    Pierson W J, Moscowitz L 1964 J. Geophys. Res. 69 5181

    [17]

    Higgins M S 1970 J. Geophys. Res. 75 6778

    [18]

    Wen S C 1984 Wave Theory and Calculation Principle (Beijing:Science Press) pp203-210 (in Chinese) [文圣常 1984 海浪理论与计算原理 (北京: 科学出版社) 第203–210页]

    [19]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p227 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第227页]

    [21]

    Yin H, Han Y 2013 Quantum Communications Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [22]

    Chakrabarti S K, Cooley R P 1997 Coastal Engineering 16 63

    [23]

    Pan J C, Chen Z H 1996 J. Marine Science Bulletin 5 1 (in Chinese) [潘锦嫦, 陈志宏 1996 海洋通报 5 1]

    [24]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

  • [1]

    Peng C Z, Yang T, Bao X H 2005 Phys. Rev. Lett. 94 4

    [2]

    Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Peng C Z, Wang S K, Yang D, Pan J W, Hu Y F, Jiang S 2010 Nat. Photon. 4 376

    [3]

    Yin J, Ren J G, Lu H 2012 Nature 488 185

    [4]

    Wang J Y, Yang B, Liao S K 2013 Nature Photon. 7 387

    [5]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William N, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269

    [6]

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303 (in Chinese) [聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303]

    [7]

    Nie M, Wang Y, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 020303 (in Chinese) [聂敏, 王允, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 020303]

    [8]

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 020303 (in Chinese) [聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 020303]

    [9]

    Yoon S B, Liu P L F 1989 J. Fluid Mech. 205 397

    [10]

    Li Y C, Zhang Y G 1996 J. Hydrody. 11 205 (in Chinese) [李玉成, 张永刚 1996 水动力学研究与进展 11 205]

    [11]

    Sverdrup H U, Munk W H 1947 J. Hydrographic Office 601 44

    [12]

    Sverdrup H U 1947 American Geophysical Union. 28 407

    [13]

    Bretschneider C L 1952 American Geophysical Union. 33 381

    [14]

    Wang Y L, Zhang H S, Miao G P 2005 China Ocean Engineering 19 49

    [15]

    Higgins M S 1975 J. Geopbys. Res. 80 2688

    [16]

    Pierson W J, Moscowitz L 1964 J. Geophys. Res. 69 5181

    [17]

    Higgins M S 1970 J. Geophys. Res. 75 6778

    [18]

    Wen S C 1984 Wave Theory and Calculation Principle (Beijing:Science Press) pp203-210 (in Chinese) [文圣常 1984 海浪理论与计算原理 (北京: 科学出版社) 第203–210页]

    [19]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [20]

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) p227 (in Chinese) [尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第227页]

    [21]

    Yin H, Han Y 2013 Quantum Communications Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [22]

    Chakrabarti S K, Cooley R P 1997 Coastal Engineering 16 63

    [23]

    Pan J C, Chen Z H 1996 J. Marine Science Bulletin 5 1 (in Chinese) [潘锦嫦, 陈志宏 1996 海洋通报 5 1]

    [24]

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301 (in Chinese) [聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301]

  • [1] Wei Rong-Yu, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication. Acta Physica Sinica, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [2] He Feng-Tao, Du Ying, Zhang Jian-Lei, Fang Wei, Li Bi-Li, Zhu Yun-Zhou. Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence. Acta Physica Sinica, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [3] Zheng Xiao-Yi, Long Yin-Xiang. Cluster state based controlled quantum secure direct communication protocol with controllable channel capacity. Acta Physica Sinica, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [4] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [5] Li Xi-Han. Quantum secure direct communication. Acta Physica Sinica, 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [6] Yang Guang, Lian Bao-Wang, Nie Min. Fidelity recovery scheme for quantum teleportation in amplitude damping channel. Acta Physica Sinica, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [7] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [8] Chen Peng, Cai You-Xun, Cai Xiao-Fei, Shi Li-Hui, Yu Xu-Tao. Quantum channel establishing rate model of quantum communication network based on entangled states. Acta Physica Sinica, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [9] Wang Lü-Qiang, Su Tong, Zhao Bao-Sheng, Sheng Li-Zhi, Liu Yong-An, Liu Duo. Bit error rate analysis of X-ray communication system. Acta Physica Sinica, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [10] Du Ya-Nan, Xie Wen-Zhong, Jin Xuan, Wang Jin-Dong, Wei Zheng-Jun, Qin Xiao-Juan, Zhao Feng, Zhang Zhi-Ming. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states. Acta Physica Sinica, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] Nie Min, Shang Peng-Gang, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation. Acta Physica Sinica, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [12] Nie Min, Zhang Lin, Liu Xiao-Hui. Poisson survival model of quantum entanglement signaling network and fidelity analysis. Acta Physica Sinica, 2013, 62(23): 230303. doi: 10.7498/aps.62.230303
    [13] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [14] Xiao Hai-Lin, Ouyang Shan, Nie Zai-Ping. The spatial degrees of freedom of MIMO quantum channels. Acta Physica Sinica, 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [15] Liu Yu-Ling, Man Zhong-Xiao, Xia Yun-Jie. Quantum secret sharing of an arbitrary two-particle entangled state via non-maximally entangled channels. Acta Physica Sinica, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [16] Liu Shao-Ding, Cheng Mu-Tian, Wang Xia, Wang Qu-Quan. The influence of spin relaxation on the entanglement of photon pairs emitted from degenerate exciton quantum dot system. Acta Physica Sinica, 2007, 56(8): 4924-4929. doi: 10.7498/aps.56.4924
    [17] Xia Yun-Jie, Wang Guang-Hui, Du Shao-Jiang. Fidelity of the scheme of continunous variables quantum teleportation via minimum-correlation mixed quantum states. Acta Physica Sinica, 2007, 56(8): 4331-4336. doi: 10.7498/aps.56.4331
    [18] Zhou Nan-Run, Zeng Gui-Hua, Gong Li-Hua, Liu San-Qiu. Quantum communication protocol for data link layer based on entanglement. Acta Physica Sinica, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [19] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] HUANG HU-QING, LI FEI. A NEW METHOD FOR CALCULATING BIT ERROR PROBABILITY IN OPTICAL SOLITON COMMUNICATION SYSTEM. Acta Physica Sinica, 1997, 46(12): 2401-2407. doi: 10.7498/aps.46.2401
Metrics
  • Abstract views:  5834
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  11 January 2018
  • Accepted Date:  05 May 2018
  • Published Online:  20 July 2019

/

返回文章
返回