Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of droplet impact on the inner surface of a cylinder

Li Yu-Jie Huang Jun-Jie Xiao Xu-Bin

Citation:

Numerical study of droplet impact on the inner surface of a cylinder

Li Yu-Jie, Huang Jun-Jie, Xiao Xu-Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Droplet impact on a solid surface is ubiquitous in daily life and various engineering fields such as ink-jet printing and surface coating. Most of existing studies focused on the droplet impact on flat or convex surface whereas the droplet impact on a concave surface has been less investigated. The purpose of this paper is to investigate the dynamic process of droplet impact on the inner surface of a cylinder numerically by using the phase-field-based lattice Boltzmann method. This method combines the finite-difference solution of the Cahn-Hilliard equation to capture the interface dynamics and the lattice Boltzmann method for the hydrodynamics of the flow. Besides, a recently proposed method is employed to deal with the wetting boundary condition on the curved wall. The method is first verified through the study of the equilibrium contact angle of a droplet on the inner surface of a cylinder and the droplet impact on a thin film, for which good agreement is obtained with theoretical results or other numerical solutions in the literature. Then, different droplet impact velocity, initial height of the droplet, surface wettability and radius of the cylinder are considered for the main problem and their effects on the evolution of the droplet shape are investigated. The physical properties of the droplet including the density and viscosity are also varied to assess their effects on the impact outcome. It is found that the impact Weber number, the liquid/gas density and dynamic viscosity ratios, the wettability of the inner surface of the cylinder, and the radius of the cylinder may have significant effects on the deformation and spreading of the droplet. At low Weber numbers, when the density and dynamic viscosity ratios are sufficiently high, their variations have little effect on the droplet impact process. At high Weber numbers, changes of these two ratios have more noticeable effects. When the Weber number is high enough, droplet splashing appears. When the density and dynamic viscosity ratios are high, the initial height of the droplet only has a minor effect on the impact results. The increment of the cylinder radius not only increases the maximum spreading radius but also enlarges the oscillation period of the droplet after its impact. Rebound of the droplet may be observed when the contact angle of the inner surface of the cylinder is large enough. Besides, the gravity force is found to suppress the oscillation of the droplet on the cylinder's inner surface. This work may broaden our understanding of the droplet impact on curved surfaces.
      Corresponding author: Huang Jun-Jie, jjhuang@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202250).
    [1]

    Guo Y X, Liu Y Z, Dong W, Lei G L, Zhu J J 2016 Acta Aerodyn. Sin. 34 573 (in Chinese) [郭宇翔, 刘荫泽, 董威, 雷桂林, 朱剑鋆 2016 空气动力学报 34 573]

    [2]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [3]

    Han F H, Zhang C M, Wang Y X 1995 J. Beijing Univ. Aeron. Astron. 21 16 (in Chinese) [韩凤华, 张朝民, 王跃欣 1995 北京航空航天大学学报 21 16]

    [4]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Technol. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [5]

    Fan Y 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [范瑶 2016 硕士学位论文 (重庆: 重庆大学)]

    [6]

    Wang Y E, Zhou J H, Qin Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock 31 51 (in Chinese) [汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51]

    [7]

    Li Y P, Wang H R 2009 J. Xi'an Jiaotong Univ. 43 21 (in Chinese) [李彦鹏, 王焕然 2009 西安交通大学学报 43 21]

    [8]

    Huang J J, Wu J, Huang H 2018 Eur. Phys. J. E 41 17

    [9]

    Shen S Q, Bi F F, Guo Y L 2012 Int. J. Heat Mass Tran. 55 6938

    [10]

    Song Y C, Ning Z, Sun C H, L M, Yan K, Fu J 2013 T. CSICE 31 531 (in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 内燃机学报 31 531]

    [11]

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 CIESC J. 66 1667 (in Chinese) [郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 66 1667]

    [12]

    Ling J 2016 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [凌俊 2016 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Huang J J, Huang H B, Shu C, Chew Y T, Wang S L 2013 J. Phys. A: Math. Theor. 46 55501

    [14]

    Lee T 2009 Compu. Math. Appl. 58 987

    [15]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [16]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [17]

    Lee H G, Kim J 2011 Comput. Fluids 44 178

    [18]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708

    [19]

    Huang J J, Huang H B, Wang X Z 2015 Int. J. Numer. Meth. Fluids 77 123

    [20]

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702]

    [21]

    Shen S Q, Yu H, Guo Y L, Liang G T 2013 J. Therm. Sci. Technol. 12 20 (in Chinese) [沈胜强, 于欢, 郭亚丽, 梁刚涛 2013 热科学与技术 12 20]

    [22]

    Yue P T, Zhou C F, Feng J J 2010 J. Fluid Mech. 645 279

    [23]

    Wen B H, Zhang C Y, Fang H P 2017 Sci. Sin.: Phys. Mech. Astron. 47 070012 (in Chinese) [闻炳海, 张超英, 方海平 2017 中国科学: 物理学 力学 天文学 47 070012]

    [24]

    Shao J Y, Shu C, Huang H B, Chew Y T 2014 Phys. Rev. E 89 033309

    [25]

    Prosperetti A 1981 Phys. Fluids 24 1217

    [26]

    Liu Y, Tan P, Xu L 2015 PNAS 112 3280

    [27]

    Yue P, Zhou C, Feng J J 2007 J. Comput. Phys. 223 1

  • [1]

    Guo Y X, Liu Y Z, Dong W, Lei G L, Zhu J J 2016 Acta Aerodyn. Sin. 34 573 (in Chinese) [郭宇翔, 刘荫泽, 董威, 雷桂林, 朱剑鋆 2016 空气动力学报 34 573]

    [2]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [3]

    Han F H, Zhang C M, Wang Y X 1995 J. Beijing Univ. Aeron. Astron. 21 16 (in Chinese) [韩凤华, 张朝民, 王跃欣 1995 北京航空航天大学学报 21 16]

    [4]

    Li W Z, Zhu W Y, Quan S L, Jiang Y X 2008 J. Therm. Sci. Technol. 7 155 (in Chinese) [李维仲, 朱卫英, 权生林, 姜远新 2008 热科学与技术 7 155]

    [5]

    Fan Y 2016 M. S. Thesis (Chongqing: University of Chongqing) (in Chinese) [范瑶 2016 硕士学位论文 (重庆: 重庆大学)]

    [6]

    Wang Y E, Zhou J H, Qin Y L, Li P L, Yang M M, Han Q, Wang Y B, Wei S M 2012 J. Vib. Shock 31 51 (in Chinese) [汪焰恩, 周金华, 秦琰磊, 李鹏林, 杨明明, 韩琴, 王月波, 魏生民 2012 振动与冲击 31 51]

    [7]

    Li Y P, Wang H R 2009 J. Xi'an Jiaotong Univ. 43 21 (in Chinese) [李彦鹏, 王焕然 2009 西安交通大学学报 43 21]

    [8]

    Huang J J, Wu J, Huang H 2018 Eur. Phys. J. E 41 17

    [9]

    Shen S Q, Bi F F, Guo Y L 2012 Int. J. Heat Mass Tran. 55 6938

    [10]

    Song Y C, Ning Z, Sun C H, L M, Yan K, Fu J 2013 T. CSICE 31 531 (in Chinese) [宋云超, 宁智, 孙春华, 吕明, 阎凯, 付娟 2013 内燃机学报 31 531]

    [11]

    Zheng Z W, Li D S, Qiu X Q, Zhu X L, Cui Y J 2015 CIESC J. 66 1667 (in Chinese) [郑志伟, 李大树, 仇性启, 朱晓丽, 崔运静 2015 化工学报 66 1667]

    [12]

    Ling J 2016 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese) [凌俊 2016 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Huang J J, Huang H B, Shu C, Chew Y T, Wang S L 2013 J. Phys. A: Math. Theor. 46 55501

    [14]

    Lee T 2009 Compu. Math. Appl. 58 987

    [15]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [16]

    Lallemand P, Luo L S 2000 Phys. Rev. E 61 6546

    [17]

    Lee H G, Kim J 2011 Comput. Fluids 44 178

    [18]

    Ding H, Spelt P D M 2007 Phys. Rev. E 75 046708

    [19]

    Huang J J, Huang H B, Wang X Z 2015 Int. J. Numer. Meth. Fluids 77 123

    [20]

    Gao Y J, Jiang H Q, Li J J, Zhao Y Y, Hu J C, Chang Y H 2017 Acta Phys. Sin. 66 024702 (in Chinese) [高亚军, 姜汉桥, 李俊键, 赵玉云, 胡锦川, 常元昊 2017 物理学报 66 024702]

    [21]

    Shen S Q, Yu H, Guo Y L, Liang G T 2013 J. Therm. Sci. Technol. 12 20 (in Chinese) [沈胜强, 于欢, 郭亚丽, 梁刚涛 2013 热科学与技术 12 20]

    [22]

    Yue P T, Zhou C F, Feng J J 2010 J. Fluid Mech. 645 279

    [23]

    Wen B H, Zhang C Y, Fang H P 2017 Sci. Sin.: Phys. Mech. Astron. 47 070012 (in Chinese) [闻炳海, 张超英, 方海平 2017 中国科学: 物理学 力学 天文学 47 070012]

    [24]

    Shao J Y, Shu C, Huang H B, Chew Y T 2014 Phys. Rev. E 89 033309

    [25]

    Prosperetti A 1981 Phys. Fluids 24 1217

    [26]

    Liu Y, Tan P, Xu L 2015 PNAS 112 3280

    [27]

    Yue P, Zhou C, Feng J J 2007 J. Comput. Phys. 223 1

  • [1] Lai Yao-Yao, Chen Xin-Meng, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann method based feedback control approach for pinned spiral waves. Acta Physica Sinica, 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [3] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [4] Li Teng, Qiu Wen-Ting, Gong Shen. Phase-field method based simulation of martensitic transformation in porous alloys. Acta Physica Sinica, 2023, 72(14): 148102. doi: 10.7498/aps.72.20230212
    [5] Zhang Xiao-Lin, Huang Jun-Jie. Study on wetting and spreading behaviors of compound droplets on wedge by lattice Boltzmann method. Acta Physica Sinica, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [6] Liang De-Shan, Huang Hou-Bing, Zhao Ya-Nan, Liu Zhu-Hong, Wang Hao-Yu, Ma Xing-Qiao. Size effect of topological charge in disc-like nematic liquid crystal films. Acta Physica Sinica, 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [7] Hu Xiao-Liang, Liang Hong, Wang Hui-Li. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [8] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [9] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [10] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [11] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [12] Shi Dong-Yan, Wang Zhi-Kai, Zhang A-Man. A novel lattice Boltzmann method for dealing with arbitrarily complex fluid-solid boundaries. Acta Physica Sinica, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [14] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [15] Su Jin, Ouyang Jie, Wang Xiao-Dong. Lattice Boltzmann method for an advective transport equation coupled with incompressible flow field. Acta Physica Sinica, 2012, 61(10): 104702. doi: 10.7498/aps.61.104702
    [16] Zeng Jian-Bang, Li Long-Jian, Liao Quan, Chen Qing-Hua, Cui Wen-Zhi, Pan Liang-Ming. Application of lattice Boltzmann method to phase transition process. Acta Physica Sinica, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [17] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] Chen Yun, Kang Xiu-Hong, Xiao Na-Min, Zheng Cheng-Wu, Li Dian-Zhong. Phase field modelling of grain growth in polycrystalline material. Acta Physica Sinica, 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [19] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
Metrics
  • Abstract views:  7150
  • PDF Downloads:  217
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2018
  • Accepted Date:  07 May 2018
  • Published Online:  20 September 2019

/

返回文章
返回