Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and numerical simulation demonstration of multi-functional holographic phase plate for large depth of field single molecular localization microscopy

Li Si-Wei Wu Jing-Jing Zhang Sai-Wen Li Heng Chen Dan-Ni Yu Bin Qu Jun-Le

Citation:

Design and numerical simulation demonstration of multi-functional holographic phase plate for large depth of field single molecular localization microscopy

Li Si-Wei, Wu Jing-Jing, Zhang Sai-Wen, Li Heng, Chen Dan-Ni, Yu Bin, Qu Jun-Le
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The development of nanoscale single-molecule localization and tracking technology for multiple bio-molecules in intact cells has important significance for studying the dynamic process in life process. Since most of cells are several microns in depth, but the focal depth of traditional optical microscopes are less than one micron, the limited depth of field is the main drawback of conventional single molecular localization microscopy that prevents observation and tracking of multiple molecules in intact cells. In this paper, based on the wavefront coding technique, a new type of holographic phase plate with high efficiency is proposed and designed to extend the depth of field of single molecular localization microscopy, which combines the distorted multi-value pure-phase grating (DMVPPG) with the double-helix point spread function (DH-PSF). The DMVPPG can be used to realize multiplane imaging of several tens of layers of a sample in a single detection plane. And the DH-PSF is an engineered point spread function which encodes the lateral and axial position with high precision of a molecule in the center of its two lobes and the angle between them respectively. Using the combined holographic phase plate, the molecules in dozens layers of a whole cell can be simultaneously imaged on the same detection plane with DH-PSF. Not only can the axial resolving power be improved, but the imaging depth can also be extended without scanning. Adding such a holographic phase plate to the imaging path, the limited imaging depth problem in single-molecule-localization microscopy can be solved without sacrificing the localization accuracy. The proposed new type of holographic phase plate can also be implemented with a spatial light modulator. In the following numerical simulation experiments, the designed holographic phase plate is composed of 600×600 pixels with a pixel size of 10 μm. The distance between two adjacent focal planes is designed to be 0.5 μm. Such a holographic phase plate is placed on the Fourier transform plane of the detection light path. When an emitter is located on the focal plane, it can be imaged as two lobes without rotation in a center area of the field of view. If an emitter is -6 μm away from the focal plane, the DH-PSF appears in the upper-left area of the field of view. Simulation results demonstrate that a total of 25 sample layers can be simultaneously imaged on the single detection plane and the 12 μm detection range can be achieved, thus proving the feasibility of this method.
      Corresponding author: Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB352005, 2017YFA0700500), the National Natural Science Foundation of China (Grant Nos. 61775144, 61525503, 61620106016, 81727804, 61605127), the Guangdong Natural Science Foundation, China (Grant Nos. 2014A030312008, 2017A030310132), the Shenzhen Basic Research Project, China (Grant Nos. JCYJ20170818141701667, JCYJ20170818144012025, JCYJ20170412105003520, JCYJ20160308104404452, JCYJ20170818142804605), and the China Scholarship Council (Grant No. 201708440486).
    [1]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz L, Hess H F 2006 Science 313 1642

    [2]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [3]

    Hess S T, Girirajan T P, Mason M D 2006 Bio. Phys. J. 91 4258

    [4]

    Chamma I, Levet F, Sibarita J B, Sainlos M, Thoumine O 2016 Neurophotonics 3 041810

    [5]

    Endesfelder U, Heilemann M 2014 Nat. Methods 11 235

    [6]

    Flors C 2011 Biopolymers 95 290

    [7]

    Patterson G, Davidson M, Manley S, Lippincottschwartz J 2010 Annu. Rev. Phys. Chem. 61 345

    [8]

    Hossain S, Hashimoto M, Katakura M, Mamun A A, Shido O 2015 Bmc. Complem. Altern. M. 15 1

    [9]

    Huang B, Wang W, Bates M, Zhuang X W 2008 Science 319 810

    [10]

    Kao H P, Verkman A S 1994 Bio. Phys. J. 67 1291

    [11]

    Pavani S R, Piestun R 2008 Opt. Express 16 22048

    [12]

    Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J 2008 Nat. Methods 5 527

    [13]

    Hajj B, Wisniewski J, El B M, Chen J, Revyakin A, Wu C, Dahan M 2014 Proc. Natl. Acad. Sci. USA 111 17480

    [14]

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206 (in Chinese)[于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206]

    [15]

    Yousry T A, Pelletier D, Cadavid D, Gass A, Richert N D, Radue E W, Filippi M 2012 Ann. Neurol. 72 779

    [16]

    Yu J, Zhou C, Jia W, Ma J, Hu A, Wu J, Wang W 2013 Opt. Lett. 38 474

    [17]

    Zhu L, Sun M, Zhu M, Chen J, Gao X, Ma W, Zhang D 2014 Opt. Express 22 21354

    [18]

    Schechner Y Y, Piestun R, Shamir J 1996 Phys. Rev. E:Stat. Phys. Plasmas, Fluids 54 50

    [19]

    Ginni G, Sean Q, Callie F, Rafael P 2011 Biomed. Opt. Express 2 3010

    [20]

    Thompson M A, Casolari J M, Badieirostami M, Brown P O, Moerner W E 2010 Proc. Natl. Acad. Sci. USA 107 17864

    [21]

    Greengard A, Schechner Y Y, Piestun R 2006 Opt. Lett. 31 181

    [22]

    Pavani S R, Piestun R 2008 Opt. Express 16 3484

    [23]

    Grover G, Deluca K, Quirin S, Deluca J, Piestun 2012 Opt. Express 20 26681

    [24]

    Indebetouw G 1993 J. Mod. Opt. 40 73

    [25]

    Blanchard P M, Greenaway A H 1999 Appl. Opt. 38 6692

    [26]

    Zhou C, Liu L 1995 Appl. Opt. 34 5961

  • [1]

    Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz L, Hess H F 2006 Science 313 1642

    [2]

    Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793

    [3]

    Hess S T, Girirajan T P, Mason M D 2006 Bio. Phys. J. 91 4258

    [4]

    Chamma I, Levet F, Sibarita J B, Sainlos M, Thoumine O 2016 Neurophotonics 3 041810

    [5]

    Endesfelder U, Heilemann M 2014 Nat. Methods 11 235

    [6]

    Flors C 2011 Biopolymers 95 290

    [7]

    Patterson G, Davidson M, Manley S, Lippincottschwartz J 2010 Annu. Rev. Phys. Chem. 61 345

    [8]

    Hossain S, Hashimoto M, Katakura M, Mamun A A, Shido O 2015 Bmc. Complem. Altern. M. 15 1

    [9]

    Huang B, Wang W, Bates M, Zhuang X W 2008 Science 319 810

    [10]

    Kao H P, Verkman A S 1994 Bio. Phys. J. 67 1291

    [11]

    Pavani S R, Piestun R 2008 Opt. Express 16 22048

    [12]

    Juette M F, Gould T J, Lessard M D, Mlodzianoski M J, Nagpure B S, Bennett B T, Hess S T, Bewersdorf J 2008 Nat. Methods 5 527

    [13]

    Hajj B, Wisniewski J, El B M, Chen J, Revyakin A, Wu C, Dahan M 2014 Proc. Natl. Acad. Sci. USA 111 17480

    [14]

    Yu B, Li H, Chen D N, Niu H B 2013 Acta Phys. Sin. 62 154206 (in Chinese)[于斌, 李恒, 陈丹妮, 牛憨笨 2013 物理学报 62 154206]

    [15]

    Yousry T A, Pelletier D, Cadavid D, Gass A, Richert N D, Radue E W, Filippi M 2012 Ann. Neurol. 72 779

    [16]

    Yu J, Zhou C, Jia W, Ma J, Hu A, Wu J, Wang W 2013 Opt. Lett. 38 474

    [17]

    Zhu L, Sun M, Zhu M, Chen J, Gao X, Ma W, Zhang D 2014 Opt. Express 22 21354

    [18]

    Schechner Y Y, Piestun R, Shamir J 1996 Phys. Rev. E:Stat. Phys. Plasmas, Fluids 54 50

    [19]

    Ginni G, Sean Q, Callie F, Rafael P 2011 Biomed. Opt. Express 2 3010

    [20]

    Thompson M A, Casolari J M, Badieirostami M, Brown P O, Moerner W E 2010 Proc. Natl. Acad. Sci. USA 107 17864

    [21]

    Greengard A, Schechner Y Y, Piestun R 2006 Opt. Lett. 31 181

    [22]

    Pavani S R, Piestun R 2008 Opt. Express 16 3484

    [23]

    Grover G, Deluca K, Quirin S, Deluca J, Piestun 2012 Opt. Express 20 26681

    [24]

    Indebetouw G 1993 J. Mod. Opt. 40 73

    [25]

    Blanchard P M, Greenaway A H 1999 Appl. Opt. 38 6692

    [26]

    Zhou C, Liu L 1995 Appl. Opt. 34 5961

  • [1] Ma Guang-Peng, Gong Zhen-Quan, Nie Meng-Jiao, Cao Hui-Qun, Qu Jun-Le, Lin Dan-Ying, Yu Bin. Multifocus double-helix point spread function microscopy for 3D single particle tracking. Acta Physica Sinica, 2024, 73(10): 108701. doi: 10.7498/aps.73.20240271
    [2] Wang Jian, Ma Chao, Wang Dong-Hui, Meng Ling-Zhi, Wang Hong-Ye, Yuan Li-Bo. Properties of off-axis helical long-period fiber gratings. Acta Physica Sinica, 2023, 72(13): 130701. doi: 10.7498/aps.72.20230415
    [3] Li Si-Wei, Lin Dan-Ying, Zou Xiao-Hui, Zhang Wei, Chen Dan-Ni, Yu Bin, Qu Jun-Le. Mutifocal image scanning microscopy based on double-helix point spread function engineering. Acta Physica Sinica, 2021, 70(3): 038701. doi: 10.7498/aps.70.20200640
    [4] Zhao Zhong-Chao, Yang Xu-Feng, Xu Tian-Xu, He Jiu-Ru, Gong Qiao-Xiao, Du Yan-Li, Dong Lin, Yuan Bin, Ma Feng-Ying. Point spread function of incoherent digital holography based on spiral phase modulation. Acta Physica Sinica, 2018, 67(1): 014203. doi: 10.7498/aps.67.20171442
    [5] Wen Peng, Tao Gang, Ren Bao-Xiang, Pei Zheng. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Acta Physica Sinica, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [6] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [7] Ma Bin, Rao Qiu-Hua, He Yue-Hui, Wang Shi-Liang. Molecular dynamics simulation of tensile deformation mechanism of the single crystal tungsten nanowire. Acta Physica Sinica, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [8] Chen He, Yu Bin, Chen Dan-Ni, Li Heng, Niu Han-Ben. Super-diffraction imaging in three-dimensional localization precision of the double-helix point spread function. Acta Physica Sinica, 2013, 62(14): 144201. doi: 10.7498/aps.62.144201
    [9] Li Heng, Yu Bin, Chen Dan-Ni, Niu Han-Ben. Design and experimental demonstration of high-efficiency double-helix point spread function phase plate. Acta Physica Sinica, 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [10] Yu Bin, Li Heng, Chen Dan-Ni, Niu Han-Ben. Design, fabrication, and experimental demonstration of a diffractive optical element with long depth of field for nanoscale three-dimensional multi-molecule tracking. Acta Physica Sinica, 2013, 62(15): 154206. doi: 10.7498/aps.62.154206
    [11] Zhao Ting-Yu, Liu Qin-Xiao, Yu Fei-Hong. The point spread function analysis in a wavefront coding system based on stationary phase method. Acta Physica Sinica, 2012, 61(7): 074207. doi: 10.7498/aps.61.074207
    [12] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [13] He An-Min, Shao Jian-Li, Wang Pei, Qin Cheng-Sen. Plastic deformation of single-crystalline copper films with surface orientation [001] : molecular dynamics simulations. Acta Physica Sinica, 2010, 59(12): 8836-8842. doi: 10.7498/aps.59.8836
    [14] Liu Yong-Li, Zhao Xing, Zhang Zong-Ning, Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the shear deformation in TiAl/Ti3Al system. Acta Physica Sinica, 2009, 58(13): 246-S253. doi: 10.7498/aps.58.246
    [15] Dai Shao-Yu, Wu Zhen-Sen, Xu Yang-Bin. Using the MRTD based on Daubechies scaling functions to solve the problem of electromagnetic scattering. Acta Physica Sinica, 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [16] Wang Ling, Xu Zhi-Hai, Feng Hua-Jun. Monte Carlo simulation for diffuse backscattering of polarized light from poly-disperse highly dense media. Acta Physica Sinica, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [17] . Acta Physica Sinica, 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [18] YANG GUANG-CAN. ENERGY LEVEL NUMBER AND DISSOCIATION ENERGY OF DIATOMIC MOLECULES DESCRIBED BY THE q-DEFORMED OSCILLATOR MODEL. Acta Physica Sinica, 1993, 42(1): 92-94. doi: 10.7498/aps.42.92
    [19] YAN HONG, CHANG ZHE, GUO HAN-YING. q-ROTATING OSCILLATOR MODEL (I)——q-Oscillator and Vibrational Spectra of Diatomic Molecules. Acta Physica Sinica, 1991, 40(9): 1377-1387. doi: 10.7498/aps.40.1377
    [20] 用变形的传播函数计算核子电荷半径. Acta Physica Sinica, 1961, 17(1): 57-60. doi: 10.7498/aps.17.57
Metrics
  • Abstract views:  5896
  • PDF Downloads:  97
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2018
  • Accepted Date:  16 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回