Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties of off-axis helical long-period fiber gratings

Wang Jian Ma Chao Wang Dong-Hui Meng Ling-Zhi Wang Hong-Ye Yuan Li-Bo

Citation:

Properties of off-axis helical long-period fiber gratings

Wang Jian, Ma Chao, Wang Dong-Hui, Meng Ling-Zhi, Wang Hong-Ye, Yuan Li-Bo
PDF
HTML
Get Citation
  • In this paper, a new four-electrode arc discharge device with large constant temperature region is designed, which is used to prepared high-quality off-axis helical long-period fiber grating. The larger constant temperature heating area is more conducive to releasing the stress of optical fiber, so that the prepared device is less off-axis. In order to show that low off-axis is a key parameter of high-quality off-axis helical long-period fiber grating, the effects of single mode fiber on transmission spectrum of off-axis helical long-period fiber grating under different coupling lengths, pitches, core refractive indexes, cladding refractive indexes, core diameters, cladding diameters and off-axis quantity are simulated by using beam propagation method. Since traditional methods are difficult to measure the off-axis helical long-period fiber grating with small off-axis quantity, the off-axis quantity of the prepared device is estimated by using the method of spectral comparison and back-thrust off-axis quantity in this work. The off-axis helical long-period fiber grating is prepared by using the established processing device. The off-axis quantities of the prepared devices are about 0.12, 0.13 and 0.16 µm, respectively, according to the comparison between the simulated transmission spectrum and the actual spectrum. Finally, experiments on the torsional resistance and repeatability of the off-axis helical long-period fiber grating prepared by the device are carried out. The experimental results show that the prepared grating has certain torsional resistance and good spectral repeatability.
      Corresponding author: Yuan Li-Bo, lbyuan@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827819, 62265004) and the Bagui Scholars Program of Guangxi Zhuang Autonomous Region, China (Grant No. 2019A38).
    [1]

    Yang L, Xue L L, Su J, Qian J R 2011 Chin. Opt. Lett. 9 070603Google Scholar

    [2]

    Xu H X, Yang L 2013 Opt. Lett. 38 1978Google Scholar

    [3]

    Zhu C L, Wang L, Zhao H, Bing Z H, Zhao Y, Li H P 2022 Opt. Commun. 503 127452Google Scholar

    [4]

    Rao X F, Yang L, Su J, Ban Q M, Deng X, Wang W 2022 Opt. Lett. 47 5758Google Scholar

    [5]

    Ma C, Wang D, Deng H, Yuan L B 2022 Opt. Fiber. Technol. 73 103019Google Scholar

    [6]

    Liu Y Q, Liu Q, Chiang K S 2009 Opt. Lett. 34 1726Google Scholar

    [7]

    Ryu H S, Park Y, Oh S T, Chung Y, Kim D Y 2003 Opt. Lett. 28 155Google Scholar

    [8]

    Wang Y P, Xiao L M, Wang D N, Jin W 2007 Opt. Lett. 32 1035Google Scholar

    [9]

    Fu C, Ni Y Q, Sun T, Wang Y, Ding S, Vidakovic M 2021 Adv. Struct. Eng. 24 1248Google Scholar

    [10]

    Zhao Y Y, Liu S, Luo J X, Chen Y P, Fu C L, Xiong C, Wang Y, Jing S Y, Bai Z Y, Liao C R, Wang Y P 2020 J. Lightwave Technol. 38 2504Google Scholar

    [11]

    Liu Y, Yuan L B 2020 Optik 223 165557Google Scholar

    [12]

    Gao K Y, Zhang Z, Huang B, Hao H, Zhao H, Wang P, Li H P 2022 J Opt. Soc. Am. B 39 1075Google Scholar

    [13]

    Shen X, Hu X W, Yang L Y, Dai N L, Wu J J, Zhang F F, Peng J G, Li H Q, Li J Y 2017 Opt. Express 25 10405Google Scholar

    [14]

    Jiang C, Liu Y Q, Zhao Y H, Mou C B, Wang T Y 2019 J. Lightwave Technol. 37 889Google Scholar

    [15]

    Ma C, Wang J, Yuan L B 2021 Photonics 8 193Google Scholar

    [16]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightwave Technol. 21 1320Google Scholar

    [17]

    Wang Y P, Chen J P, Rao Y J 2005 J. Opt. Soc. Am. B 22 1167Google Scholar

    [18]

    Zhang L, Liu Y, Cao X, Wang T 2016 IEEE Sens. J. 16 4253Google Scholar

    [19]

    Kong X D, Ren K L, Ren L Y, Liang J, Ju H J 2017 Appl. Opt. 56 4702Google Scholar

    [20]

    Zhao H, Li H P 2021 Photonics 8 106Google Scholar

    [21]

    Shao L P, Liu S, Zhou M, Huang Z, Bao W J, Bai Z Y, Liu Z, Zhu G X, Sun Z Y, Zhong J L, Wang Y P 2021 Opt. Express 29 43371Google Scholar

    [22]

    Mizushima R, Detani T, Zhu C L, Wang P, Zhao H, Li H P 2021 J. Lightwave. Technol. 39 3269Google Scholar

    [23]

    Ren K L, Ren L Y, Liang J, Kong X D, Ju H J, Xu Y P, Wu Z X 2016 Appl. Opt. 55 9675Google Scholar

    [24]

    Liu W, Duan S, Du H, Jiang H, Sun C, Jin X, Zhao L, Geng T, Tong C, Yuan L B 2019 J. Mod. Optic. 66 1215Google Scholar

    [25]

    Sun B, Wei W, Liao C, Zhang L, Zhang Z, Chen M Y, Wang Y 2017 IEEE Photonic. Tech. L. 29 873Google Scholar

    [26]

    Bai Y, He Z, Bai J, Dang S 2021 Appl. Phys. B 127 1Google Scholar

    [27]

    Liu Y, Deng H, Yuan L B 2019 Opt. Fiber. Technol. 52 101950Google Scholar

    [28]

    Tachikura M 1984 Appl. Opt. 23 492Google Scholar

    [29]

    Xu H X, Yang L, Han Z F, Qian J R 2013 Opt. Commun. 291 207Google Scholar

    [30]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar

    [31]

    Fu C, Wang Y P, Liu S, Bai Z Y, Liao C, He J, Wang Y P 2019 Sensors 19 4473Google Scholar

    [32]

    Ma M, Lian Y, Wang Y P, Lu Z 2021 Front. Phys. 9 773505Google Scholar

    [33]

    Li Z L, Liu S, Bai Z Y, Fu C L, Zhang Y, Sun Z Y, Liu X Y, Wang Y P 2018 Opt. Express 26 24114Google Scholar

    [34]

    Liu S, Zhou M, Shao L P, Zhang Z, Bai Z Y, Wang Y P 2022 Opt. Express 30 21085Google Scholar

  • 图 1  (a) 大恒温区的四电极电弧放电OAH-LPFG加工装置; (b) OAH-LPFG结构; (c) OAH-LPFG的某一横截面; (d) 四电极加工装置结构; (e) 二电极加工装置结构

    Figure 1.  (a) Four electrodes arc discharge OAH-LPFG processing device in large constant temperature region; (b) OAH-LPFG structure; (c) a cross section of OAH-LPFG; (d) structure of the four-electrode machining device; (e) structure of the two-electrode machining device.

    图 2  (a) 四电极未进行电弧放电时红外热像仪拍摄的温度图; (b) 四电极电弧放电加热光纤图; (c) 四电极电弧放电加热光纤时, 红外热像仪拍摄的温度图; (d) 四电极电弧放电时, 光纤加热区域最高温度的波动情况

    Figure 2.  (a) Temperature map taken by infrared thermal imager when arc discharge is not carried out on four electrodes; (b) four-electrode arc discharge heating fiber diagram; (c) temperature map taken by infrared thermal imager when the optical fiber is heated by four-electrode arc discharge; (d) fluctuation of the maximum temperature in the optical fiber heating region during the four-electrode arc discharge.

    图 3  (a) 光纤中模式有效折射率随波长的变化. 不同光栅周期Λ及耦合长度Lc的透射光谱 (b) Λ = 900 µm, Lc = 50 mm; (c) Λ = 700 µm, Lc = 29 mm; (d) Λ = 600 µm, Lc = 17.1 mm

    Figure 3.  (a) Pattern effective refractive index changes with wavelength in fiber. Transmission spectrum with different grating period and coupling length: (b) Λ = 900 µm, Lc = 50 mm; (c) Λ = 700 µm, Lc = 29 mm; (d) Λ = 600 µm, Lc = 17.1 mm.

    图 4  不同离轴量的模式耦合过程对比图 (a) 0.12 µm离轴量; (b) 0.24 µm离轴量

    Figure 4.  Comparison diagram of mode coupling processes for different off-axis quantities: (a) 0.12 µm off-axis quantity; (b) 0.24 µm off-axis quantity.

    图 5  OAH-LPFG参数与透射光谱的关系 (a)耦合长度Lc; (b) 螺距$ \varLambda $; (c)纤芯折射率nco; (d)包层折射率ncl; (e)纤芯直径dco; (f)包层直径dcl. 透射光谱与离轴量d的关系 (g) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $模式; (h) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $模式

    Figure 5.  Relation between OAH-LPFG parameters and transmission spectrum: (a) Coupling length Lc; (b) pitch $ \varLambda $; (c) core refractive index nco; (d) cladding refractive index ncl; (e) core diameter dco; (f) cladding diameter dcl. Relationship between transmission spectrum and off-axis quantity d: (g) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ mode; (h) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ mode.

    图 6  OAH-LPFG参数对透射光谱非耦合区的影响 (a)耦合长度Lc; (b)螺距$ \varLambda $; (c)纤芯折射率nco; (d) 包层折射率ncl; (e)纤芯直径dco; (f) 包层直径dcl. 透射光谱非耦合区与离轴量d的关系 (g) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $模式; (h) OAH-LPFG的$ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $模式

    Figure 6.  Influence of OAH-LPFG parameters on the uncoupled region of transmission spectrum: (a) Coupling length Lc; (b) pitch $ \varLambda $; (c) core refractive index nco; (d) cladding refractive index ncl; (e) core diameter dco; (f) cladding diameter dcl. Relationship between the uncoupled region of transmission spectrum and the off-axis quantity d: (g) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,2}}}} $ mode; (h) OAH-LPFG $ {\text{OA}}{{\text{M}}_{{\text{1,4}}}} $ mode

    图 7  基于四电极电弧得到的不同周期下制备的OAH-LPFG透射光谱 (a) 870 µm; (b) 750 µm; (c) 645 µm. (d) 透射光谱在1.21—1.30 µm波长范围的插入损耗及波动情况

    Figure 7.  OAH-LPFG transmission spectrum obtained based on four-electrode arc: (a) 870 µm; (b) 750 µm; (c) 645 µm. (d) Insertion loss and fluctuation of transmission spectrum in the range of wavelength 1.21–1.30 µm.

    图 8  未被加工光纤与OAH-LPFG离轴量d的显微镜照片(a) 未被加工光纤; (b) 周期870 µm OAH-LPFG; (c) 周期750 µm OAH-LPFG; (d) 周期645 µm OAH-LPFG

    Figure 8.  Microscope observation of the unprocessed fiber and OAH-LPFG off-axis quantity d: (a) Unprocessed fiber; (b) periodic 870 µm OAH-LPFG; (c) periodic 750 µm OAH-LPFG; (d) periodic 645 µm OAH-LPFG.

    图 9  匹配的透射光谱 (a) 周期870 µm; (b) 周期750 µm; (c) 周期645 µm

    Figure 9.  Matched transmission spectra: (a) Period of 870 µm; (b) period of 750 µm; (c) period of 645 µm.

    图 10  (a) 康宁单模光纤的横截面的显微图像; (b) 康宁单模光纤在光波长532 nm下测得的三维折射率轮廓图; (c) 10个离轴螺旋长周期光栅样品的透射光谱图

    Figure 10.  (a) A microscopic image of a cross section of Corning single mode fiber; (b) 3D refractive index profile of corning single-mode fiber measured at optical wavelength 532 nm; (c) transmission spectra of 10 samples of off-axis helical long-period grating.

    图 11  (a) 重复实验中光栅样品耦合峰波长的变化; (b) 重复实验中光栅样品耦合峰损耗的变化

    Figure 11.  (a) Change of coupling peak wavelength of grating samples in repeated experiment; (b) change of coupling peak loss of grating samples in repeated experiments.

    图 12  (a) 单模光纤横截面图; (b) 单模光纤扭转后的纵向截面图; (c) 偏芯光纤横截面图; (d) 偏芯光纤扭转后的纵向截面图

    Figure 12.  (a) Cross section of single-mode fiber; (b) longitudinal cross-section of single-mode fiber after torsion; (c) cross-sectional diagram of eccentric fiber; (d) longitudinal cross-section of the eccentric fiber after torsion.

    图 13  (a) 单模光纤扭转时断的情况, 最大波动为4.54 rad/m; (b) 偏芯光纤扭转时断的情况, 最大波动为4.01 rad/m

    Figure 13.  (a) Breakage of single-mode fiber during torsion, and the maximum fluctuation is 4.54 rad/m; (b) breakage of eccentric fiber during torsion, and the maximum fluctuation is 4.01 rad/m.

    图 14  (a) 顺时针时不同扭转角度的耦合峰的的透射光谱; (b) 顺时针时波长与扭曲率的依赖关系; (c) 逆时针时不同扭转角度耦合峰的透射光谱; (d) 逆时针时波长与扭曲率的依赖关系

    Figure 14.  (a) Transmission spectra of coupling peaks with different torsion angles in clockwise direction; (b) dependence of clockwise wavelength on the distortion rate; (c) transmission spectra of coupling peaks with different torsion angles in counterclockwise direction; (d) dependence of counterclockwise wavelength on the distortion rate.

    表 1  计算参数

    Table 1.  Calculation parameter.

    耦合长度
    Lc/µm
    螺距
    $\varLambda$/µm
    纤芯折射率
    nco
    包层折射率
    ncl
    纤芯直径dco/µm包层直径dcl/µm离轴量
    d/µm
    18995—172458701.4611.4578.71250.3
    15495820—8901.4611.4578.71250.3
    184958701.4606—1.46131.4578.71250.3
    181958701.4611.4566—1.45738.71250.3
    177458701.4611.4578.6—9.31250.3
    189958701.4611.4578.7124.6—125.30.3
    19495, 13245, 10245, 8045, 7095,
    6345, 5795, 5495
    8701.4611.4578.71250.30—1.35
    9095, 7798, 6745, 5545, 5545,
    5145, 4845, 4595
    6801.4611.4578.71250.30—0.65
    DownLoad: CSV

    表 2  不同制备方法制备OAH-LPFG比较[18,19,25,27,33,34]

    Table 2.  Comparison of OAH-LPFG prepared by different preparation methods[18,19,25,27,33,34].

    结构制备方法透射光谱的最小损耗说明
    单模光纤螺旋长
    周期光纤光栅
    CO2激光 > 1 dB[18]
    < 1 dB[19]
    优点: 灵活、高品质; 缺点: 光路调试麻烦、昂贵
    氢氧火焰< 1 dB[33]
    ≈ 1 dB[34]
    优点: 加热面积较宽, 加热温度均匀; 缺点: 氢气有一定危险性
    二电极电弧放电> 1 dB[25]
    > 1 dB[27]
    优点: 简单灵活; 缺点: 恒温区较窄
    四电极电弧放电< 1 dB优点: 简单灵活、大恒温区、价格便宜; 缺点: 电弧需进一步优化
    DownLoad: CSV
  • [1]

    Yang L, Xue L L, Su J, Qian J R 2011 Chin. Opt. Lett. 9 070603Google Scholar

    [2]

    Xu H X, Yang L 2013 Opt. Lett. 38 1978Google Scholar

    [3]

    Zhu C L, Wang L, Zhao H, Bing Z H, Zhao Y, Li H P 2022 Opt. Commun. 503 127452Google Scholar

    [4]

    Rao X F, Yang L, Su J, Ban Q M, Deng X, Wang W 2022 Opt. Lett. 47 5758Google Scholar

    [5]

    Ma C, Wang D, Deng H, Yuan L B 2022 Opt. Fiber. Technol. 73 103019Google Scholar

    [6]

    Liu Y Q, Liu Q, Chiang K S 2009 Opt. Lett. 34 1726Google Scholar

    [7]

    Ryu H S, Park Y, Oh S T, Chung Y, Kim D Y 2003 Opt. Lett. 28 155Google Scholar

    [8]

    Wang Y P, Xiao L M, Wang D N, Jin W 2007 Opt. Lett. 32 1035Google Scholar

    [9]

    Fu C, Ni Y Q, Sun T, Wang Y, Ding S, Vidakovic M 2021 Adv. Struct. Eng. 24 1248Google Scholar

    [10]

    Zhao Y Y, Liu S, Luo J X, Chen Y P, Fu C L, Xiong C, Wang Y, Jing S Y, Bai Z Y, Liao C R, Wang Y P 2020 J. Lightwave Technol. 38 2504Google Scholar

    [11]

    Liu Y, Yuan L B 2020 Optik 223 165557Google Scholar

    [12]

    Gao K Y, Zhang Z, Huang B, Hao H, Zhao H, Wang P, Li H P 2022 J Opt. Soc. Am. B 39 1075Google Scholar

    [13]

    Shen X, Hu X W, Yang L Y, Dai N L, Wu J J, Zhang F F, Peng J G, Li H Q, Li J Y 2017 Opt. Express 25 10405Google Scholar

    [14]

    Jiang C, Liu Y Q, Zhao Y H, Mou C B, Wang T Y 2019 J. Lightwave Technol. 37 889Google Scholar

    [15]

    Ma C, Wang J, Yuan L B 2021 Photonics 8 193Google Scholar

    [16]

    Rao Y J, Wang Y P, Ran Z L, Zhu T 2003 J. Lightwave Technol. 21 1320Google Scholar

    [17]

    Wang Y P, Chen J P, Rao Y J 2005 J. Opt. Soc. Am. B 22 1167Google Scholar

    [18]

    Zhang L, Liu Y, Cao X, Wang T 2016 IEEE Sens. J. 16 4253Google Scholar

    [19]

    Kong X D, Ren K L, Ren L Y, Liang J, Ju H J 2017 Appl. Opt. 56 4702Google Scholar

    [20]

    Zhao H, Li H P 2021 Photonics 8 106Google Scholar

    [21]

    Shao L P, Liu S, Zhou M, Huang Z, Bao W J, Bai Z Y, Liu Z, Zhu G X, Sun Z Y, Zhong J L, Wang Y P 2021 Opt. Express 29 43371Google Scholar

    [22]

    Mizushima R, Detani T, Zhu C L, Wang P, Zhao H, Li H P 2021 J. Lightwave. Technol. 39 3269Google Scholar

    [23]

    Ren K L, Ren L Y, Liang J, Kong X D, Ju H J, Xu Y P, Wu Z X 2016 Appl. Opt. 55 9675Google Scholar

    [24]

    Liu W, Duan S, Du H, Jiang H, Sun C, Jin X, Zhao L, Geng T, Tong C, Yuan L B 2019 J. Mod. Optic. 66 1215Google Scholar

    [25]

    Sun B, Wei W, Liao C, Zhang L, Zhang Z, Chen M Y, Wang Y 2017 IEEE Photonic. Tech. L. 29 873Google Scholar

    [26]

    Bai Y, He Z, Bai J, Dang S 2021 Appl. Phys. B 127 1Google Scholar

    [27]

    Liu Y, Deng H, Yuan L B 2019 Opt. Fiber. Technol. 52 101950Google Scholar

    [28]

    Tachikura M 1984 Appl. Opt. 23 492Google Scholar

    [29]

    Xu H X, Yang L, Han Z F, Qian J R 2013 Opt. Commun. 291 207Google Scholar

    [30]

    Liu S, Zhou M, Zhang Z, Sun Z Y, Bai Z Y, Wang Y P 2022 Opt. Lett. 47 2602Google Scholar

    [31]

    Fu C, Wang Y P, Liu S, Bai Z Y, Liao C, He J, Wang Y P 2019 Sensors 19 4473Google Scholar

    [32]

    Ma M, Lian Y, Wang Y P, Lu Z 2021 Front. Phys. 9 773505Google Scholar

    [33]

    Li Z L, Liu S, Bai Z Y, Fu C L, Zhang Y, Sun Z Y, Liu X Y, Wang Y P 2018 Opt. Express 26 24114Google Scholar

    [34]

    Liu S, Zhou M, Shao L P, Zhang Z, Bai Z Y, Wang Y P 2022 Opt. Express 30 21085Google Scholar

  • [1] Ding Ji-Fei, Liu Wen-Bing, Li Han-Hui, Luo Yi, Xie Chen-Kai, Huang Li-Rong. Design and fabrication of off-axis meta-lens with large focal depth. Acta Physica Sinica, 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [2] Zhang Wei-Gang, Zhang Yan-Xin, Geng Peng-Cheng, Wang Biao, Li Xiao-Lan, Wang Song, Yan Tie-Yi. Recent progress in design and fabrication of novel long-period fiber grating. Acta Physica Sinica, 2017, 66(7): 070704. doi: 10.7498/aps.66.070704
    [3] Li Yang, Zhu Zhu-Qing, Wang Xiao-Lei, Gong Li-Ping, Feng Shao-Tong, Nie Shou-Ping. Propagation evolution of the off-axis ellipse vector beam. Acta Physica Sinica, 2015, 64(2): 024204. doi: 10.7498/aps.64.024204
    [4] Chen Shun-Yi, Ding Pan-Feng, Pu Ji-Xiong. Frequency doubling effect of off-axial vortex beam in the case of weak walk-off. Acta Physica Sinica, 2015, 64(24): 244204. doi: 10.7498/aps.64.244204
    [5] Chen Shun-Yi, Ding Pan-Feng, Pu Ji-Xiong. Off axial radially polarized beam and its propagation characteristics. Acta Physica Sinica, 2015, 64(20): 204201. doi: 10.7498/aps.64.204201
    [6] Liao Wen-Ying, Fan Wan-De, Li Yuan, Chen Jun, Bu Fan-Hua, Li Hai-Peng, Wang Xin-Ya, Huang Ding-Ming. Investigation of a novel all-solid large-mode-area photonic quasi-crystal fiber. Acta Physica Sinica, 2014, 63(3): 034206. doi: 10.7498/aps.63.034206
    [7] Cao Ye, Pei Yong-Wei, Tong Zheng-Rong. Simultaneous measurement of temperature and bending-curvature using a single local micro-structured longperiod fiber grating. Acta Physica Sinica, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [8] Zhang Yin, Chen Ming-Yang, Zhou Jun, Zhang Yong-Kang. Investigation on large-mode-area flat-topped optical fiber with microstructured core and its transmission characteristics. Acta Physica Sinica, 2013, 62(17): 174211. doi: 10.7498/aps.62.174211
    [9] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [10] Chen Hai-Yun, Gu Zheng-Tian, Yang Ying. Broadband single-peak filtering characteristics of coated long-period fiber gratings. Acta Physica Sinica, 2012, 61(20): 200702. doi: 10.7498/aps.61.200702
    [11] Guo Yan-Yan, Hou Lan-Tian. Design of all-solid octagon photonic crystal fiber with large mode area. Acta Physica Sinica, 2010, 59(6): 4036-4041. doi: 10.7498/aps.59.4036
    [12] Rao Yun-Jiang, Zeng Xiang-Kai. Theory of Fourier mode coupling for long-period fiber gratings. Acta Physica Sinica, 2010, 59(12): 8607-8614. doi: 10.7498/aps.59.8607
    [13] Zhu Tao, Song Yun, Rao Yun-Jiang, Zhu Yong. Theory and fabrication of long period fiber grating with rotary refractive index modulation induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [14] Zhu Tao, Shi Cui-Hua, Rao Yun-Jiang, Chiang Kin-Seng. Theory and experiment of refractive index change of long-period fiber grating induced by CO2 laser pulses. Acta Physica Sinica, 2009, 58(9): 6316-6322. doi: 10.7498/aps.58.6316
    [15] Ruan Kai, Zhang Chun-Min, Zhao Bao-Chang. Exact calculation of the optical path difference and lateral displacement of modified large optical path difference Sagnac interferometer in full view field used in upper atmospheric wind field measurement. Acta Physica Sinica, 2008, 57(9): 5435-5441. doi: 10.7498/aps.57.5435
    [16] Wang Li, Wang Qing-Feng, Wang Xi-Qing, Lü Bai-Da. Transversal optical vortex in the interference field of two off-axis Gaussian beams. Acta Physica Sinica, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [17] Xu Xin Hua, Cui Yi Ping. Theoretical analysis and numerical calculation for the transmission spectrum of long-period fiber gratings with a rectangular index modulation. Acta Physica Sinica, 2003, 52(1): 96-101. doi: 10.7498/aps.52.96
    [18] Wang Yi-Ping, Rao Yun-Jiang, Ran Zeng-Ling, Zhu Tao. Unique characteristics of long-period fibre gratings fabricated by high-freque ncy CO2 laser pulses. Acta Physica Sinica, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
    [19] Zhang Dong-Sheng, Jiang Li, Zhang Wei-Gang, Li Li-Jun, Fan Wan-De, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. The relationship between the resonant wavelength of the long period fiber grati ng and its exposure. Acta Physica Sinica, 2003, 52(12): 3087-3091. doi: 10.7498/aps.52.3087
    [20] КАЛОРИМЕТРИЧЕСКИЙ МЕТОД ИЗМЕРЕНИЯ ПОГЛОЩЕННОЙ МОЩНОСТИ В ЭЛЕКТРОЛЮМИНЕСЦЕЦИИ. Acta Physica Sinica, 1962, 18(5): 250-253. doi: 10.7498/aps.18.250
Metrics
  • Abstract views:  3727
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2023
  • Accepted Date:  06 May 2023
  • Available Online:  08 May 2023
  • Published Online:  05 July 2023

/

返回文章
返回