-
Double helix point spread function possesses continuously rotating invariant features with defocus, and it can be used for performing nano-resolution image of thick samples and for studying singleparticle tracking by combining the single-molecule localization method. However, the inadequacy of the original double helix point spread function is that the transfer function efficiency is very low, so it is difficult to achieve photon limited applications for the bio-imaging. The double-helix point spread function is optimized by introducing an iterative algorithm so that the constraints of the point spread function can be optimized best in three different domains: the Laguerre-Gauss modal plane, the spatial domain, and the Fourier domain. The simulation results show that the peak intensity of high efficiency double helix point spread function is 30 times higher than the original one. The design and fabrication of the phase plate are also proposed. The experimental results are in good agreement with the theoretical predictions, thus proving the feasibility of this method.
-
Keywords:
- double helix point spread function /
- super-resolution imaging /
- axial localization /
- optimization algorithm
[1] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642
[2] Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793
[3] Hess S T, Girirajan T P K, Mason M D 2006 Biophys. J. 91 4258
[4] Xie X S, Yu J, Yang W Y 2006 Science 312 228
[5] Chen D N, Liu L, Yu B, Niu H B 2010 Acta Phys. Sin. 59 6948 (in Chinese) [陈丹妮, 刘磊, 于斌, 牛憨笨 2010 物理学报 59 6948]
[6] Herbert S, Soares H, Zimmer C, Henriques R 2012 Microsc. Microanal. 18 1419
[7] Jones S A, Shim S H, He J, Zhuang X 2011 Nat. Methods 8 499
[8] Ober R J, Ram S, Ward E S 2004 Biophys. J. 86 1185
[9] Huang B, Wang W, Bates M, Zhuang X 2008 Science 319 810
[10] Ram S, Prabhat P, Ward E S, Ober R J 2009 Opt. Express 17 6881
[11] Shtengel G, Galbraith J A, Galbraith C G, Lippincott-Schwartz J, Gillette J M, Manley S, Sougrat R, Waterman C M, Kanchanawong P, Davidson M W 2009 PNAS 106 3125
[12] Pavani S R P, Piestun R 2008 Opt. Express 16 3484
[13] Pavani S R P, Piestun R 2008 Opt. Express 16 3484
[14] Piestun R, Shamir J 2002 Proc. IEEE 90 222
[15] Levy U, Mendlovic D, Zalevsky Z, Shabtay G, Marom E 1999 Appl. Opt. 38 6732
[16] Piestun R, Schechner Y Y, Shamir J 2000 JOSA A 17 294
[17] Greengard A, Schechner Y Y, Piestun R 2006 Opt. Lett. 31 181
[18] Grover G, Quirin S, Fiedler C, Piestun R 2011 Biomed. Opt. Express 2 3010
-
[1] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, Lippincott-Schwartz J, Hess H F 2006 Science 313 1642
[2] Rust M J, Bates M, Zhuang X 2006 Nat. Methods 3 793
[3] Hess S T, Girirajan T P K, Mason M D 2006 Biophys. J. 91 4258
[4] Xie X S, Yu J, Yang W Y 2006 Science 312 228
[5] Chen D N, Liu L, Yu B, Niu H B 2010 Acta Phys. Sin. 59 6948 (in Chinese) [陈丹妮, 刘磊, 于斌, 牛憨笨 2010 物理学报 59 6948]
[6] Herbert S, Soares H, Zimmer C, Henriques R 2012 Microsc. Microanal. 18 1419
[7] Jones S A, Shim S H, He J, Zhuang X 2011 Nat. Methods 8 499
[8] Ober R J, Ram S, Ward E S 2004 Biophys. J. 86 1185
[9] Huang B, Wang W, Bates M, Zhuang X 2008 Science 319 810
[10] Ram S, Prabhat P, Ward E S, Ober R J 2009 Opt. Express 17 6881
[11] Shtengel G, Galbraith J A, Galbraith C G, Lippincott-Schwartz J, Gillette J M, Manley S, Sougrat R, Waterman C M, Kanchanawong P, Davidson M W 2009 PNAS 106 3125
[12] Pavani S R P, Piestun R 2008 Opt. Express 16 3484
[13] Pavani S R P, Piestun R 2008 Opt. Express 16 3484
[14] Piestun R, Shamir J 2002 Proc. IEEE 90 222
[15] Levy U, Mendlovic D, Zalevsky Z, Shabtay G, Marom E 1999 Appl. Opt. 38 6732
[16] Piestun R, Schechner Y Y, Shamir J 2000 JOSA A 17 294
[17] Greengard A, Schechner Y Y, Piestun R 2006 Opt. Lett. 31 181
[18] Grover G, Quirin S, Fiedler C, Piestun R 2011 Biomed. Opt. Express 2 3010
Catalog
Metrics
- Abstract views: 8435
- PDF Downloads: 792
- Cited By: 0