-
The inherent material imperfections of solid core optical fiber, for example, Kerr nonlinearity, chromatic dispersion, Rayleigh scattering and photodarkening, set fundamental limitations for further improving the performances of fiber-based systems. Hollow-core fiber (HCF) allows the light to be guided in an air core with many unprecedented characteristics, overcoming almost all the shortcomings arising from bulk material. The exploitation of HCF could revolutionize the research fields ranging from ultra-intense pulse delivery, single-cycle pulse generation, nonlinear optics, low latency optical communication, UV light sources, mid-IR gas lasers to biochemical sensing, quantum optics and mid-IR to Terahertz waveguides. Therefore, the investigations into the guidance mechanism and the ultimate limit of HCF have become a hot research topic. In the past two decades, scientists and engineers have fabricated two types of high-performance HCFs with loss figures of 1.7 dB/km and 7.7 dB/km for hollow-core photonic bandgap fiber (HC-PBGF) and hollow-core anti-resonant fiber (HC-ARF) respectively. In comparison with the twenty-years-old HC-PBGF technology, the HC-ARF that recently appeared outperforms the former in terms of broadband transmission and high laser damage threshold together with a quickly-improved loss figure, providing an ideal platform for many more challenging applications. While the guidance mechanism and fabrication technique in HC-PBGF have been well recognized, the HC-ARF still has a lot of room for improvement. At the birth of the first generation of broadband HC-ARF, the guidance mechanism was unclear, the fiber design was far from perfect, the fabrication was immature, and the optical properties were not optimized. In the past five years, we have developed an intuitive and semi-analytical model for the confinement loss of HC-ARF and managed to fabricate high-performance nodeless HC-ARF. We further employ our theoretical model and fabrication technique to well control and design other interesting properties, such as polarization maintenance and bending loss in HC-ARF. For a long time, the anti-resonant theory of light guidance has been regarded as being qualitative, and the leaky-mode-based HC-ARF have been considered to have worse performances than the guided-mode-based HC-PBGF. Our investigations in theory and experiment negative these prejudices, thus paving the way for the booming development of HC-ARF technologies in the near future.
-
Keywords:
- fiber optics /
- propagation losses /
- fiber fabrication /
- birefringence
[1] Kao K C, Hockham A 1966 Proc. IEEE 113 1151
[2] Russel P St J 2003 Science 299 358
[3] Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (6th Ed.) (Cambridge:Cambridge University Press) pp47-50
[4] Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) pp11-15
[5] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[6] Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals:Molding the Flow of Light (2nd Ed.) (Princeton:Princeton University) pp156-189
[7] Birks T A, Roberts P J, Russell P St J, Atkin D M, Shepherd T J 1995 Electron. Lett. 31 1941
[8] Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679
[9] Knight J C 2003 Nature 424 847
[10] Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačić M, Jacobs S A, Joannopoulos J D, Fink Y 2001 Opt. Express 9 748
[11] Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J C, Russell P St J 2005 Opt. Express 13 236
[12] Duguay M A, Kokubun Y, Koch T L, Pfeiffer L 1986 Appl. Phys. Lett. 49 13
[13] Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592
[14] Benabid F, Roberts P J 2011 J. Mod. Opt. 58 87
[15] Poletti F, Petrovich M N, Richardson D J 2013 Nanophotonics 2 315
[16] Birks T A, Bird D M, Hedley T D, Pottage J M, Russell P St J 2004 Opt. Express 12 69
[17] Pottage J M, Bird D M, Hedley T D, Birks T A, Knight J C, Russell P St J, Roberts P J 2003 Opt. Express 11 2854
[18] Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S 2002 Opt. Express 10 1314
[19] White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322
[20] Aghaie K Z, Fan S H, Digonnet M J F 2010 IEEE J. Quantum Elect. 46 920
[21] Yeh P, Yariv A, Marom E 1978 J. Opt. Soc. Am. 68 1196
[22] Marcatili E, Schmeltzer R 1964 Bell Syst. Tech. J. 43 1783
[23] Temelkuran B, Hart S D, Benoit G, Joannopoulos J, Fink Y 2002 Nature 420 650
[24] Mangan B, Farr L, Langford A, Roberts P J, Williams D P, Couny F, Lawman M, Mason M, Coupland S, Flea R, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Optical Fiber Communication Conference Los Angeles, February 23-27, PD24
[25] Ding W, Wang Y Y 2014 Opt. Express 22 27242
[26] Ding W, Wang Y Y 2015 Front. Phys. 3 16
[27] Wang Y Y, Ding W 2017 Opt. Express 25 33122
[28] Gao S F, Wang Y Y, Ding W, Wang P 2018 Opt. Lett. 43 1347
[29] Gao S F, Wang Y Y, Liu X L, Hong C, Gu S, Wang P 2017 Opt. Lett. 42 61
[30] Gao S F, Wang Y Y, Liu X L, Ding W, Wang P 2016 Opt. Express 24 14801
[31] Cao L, Gao S F, Peng Z G, Wang X C, Wang Y Y, Wang P 2018 Opt. Express 26 5609
[32] Ding W, Wang Y Y 2015 Opt. Express 23 21165
[33] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, Allan D C 1999 Science 285 1537
[34] Marcuse D 1991 Theory of Dielectric Optical Waveguides (2nd Ed.) (London:Academic Press) pp7-19
[35] Michieletto M, Lyngs J K, Jakobsen C, Lgsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103
[36] Uebel P, Gnendi M C, Frosz M H, Ahmed G, Edavalath N N, Mnard J-M, Russell P St J 2016 Opt. Lett. 41 1961
[37] Hayes J R, Sandoghchi S R, Bradley T D, Liu Z, Slavik R, Gouveia M A, Wheeler N V, Jasion G, Chen Y, Fokoua E N, Petrovich M N, Richardson D J, Poletti F 2017 J. Lightwave Technol. 35 437
[38] Chafer M, Delahaye F, Amrani F, Debord B, Grme F, Benabid F 2018 Conference on Lasers and Electro-Optics San Jose, May 13-18, paper SF1K.3
[39] Liu X L, Ding W, Wang Y Y, Gao S F, Cao L, Feng X, Wang P 2017 Opt. Lett. 42 863
[40] Vincetti L, Setti V 2012 Opt. Express 20 14350
[41] Gao S F, Wang Y Y, Liu X L, Gu S, Peng Z G, Wang P, Du K M 2017 Chin. J. Lasers 44 0201012
[42] Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, Russell P St J 2006 Opt. Express 14 7329
[43] Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V, Mukasa K 2014 Nat. Commun. 5 5085
[44] Haakestad M W, Skaar J 2005 Opt. Express 13 9922
[45] Vincetti L, Setti V 2010 Opt. Express 18 23133
[46] Olszewski J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015
[47] Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Grme F, Benabid F 2014 Opt. Express 22 10735
[48] Elu U, Baudisch M, Pires H, Tani F, Frosz M H, Kttig F, Ermolov A, Russell P St J, Biegert J 2017 Optica 4 1024
[49] Balciunas T, Fourcade-Dutin C, Fan G, Witting T, Voronin A A, Zheltikov A M, Gerome F, Paulus G G, Baltuska A, Benabid F 2015 Nat. Commun. 6 6117
[50] Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavk R, Richardson D J 2013 Nat. Photon. 7 279
[51] Kttig F, Tani F, Biersach C M, Travers J C, Russell P St J 2017 Optica 4 1272
[52] Hassan M R A, Yu F, Wadsworth W J, Knight J C 2016 Optica 3 218
[53] Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629
[54] Okaba S, Takano T, Benabid F, Bradley T, Vincetti L, Maizelis Z, Yampol'skii V, Nori F, Katori H 2014 Nat. Commun. 5 4096
[55] Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287
[56] Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W 2016 Opt. Express 24 22454
-
[1] Kao K C, Hockham A 1966 Proc. IEEE 113 1151
[2] Russel P St J 2003 Science 299 358
[3] Born M, Wolf E 1999 Principles of Optics:Electromagnetic Theory of Propagation, Interference and Diffraction of Light (6th Ed.) (Cambridge:Cambridge University Press) pp47-50
[4] Maier S A 2007 Plasmonics:Fundamentals and Applications (New York:Springer) pp11-15
[5] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[6] Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2008 Photonic Crystals:Molding the Flow of Light (2nd Ed.) (Princeton:Princeton University) pp156-189
[7] Birks T A, Roberts P J, Russell P St J, Atkin D M, Shepherd T J 1995 Electron. Lett. 31 1941
[8] Fink Y, Winn J N, Fan S, Chen C, Michel J, Joannopoulos J D, Thomas E L 1998 Science 282 1679
[9] Knight J C 2003 Nature 424 847
[10] Johnson S G, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T D, Soljačić M, Jacobs S A, Joannopoulos J D, Fink Y 2001 Opt. Express 9 748
[11] Roberts P, Couny F, Sabert H, Mangan B, Williams D, Farr L, Mason M, Tomlinson A, Birks T, Knight J C, Russell P St J 2005 Opt. Express 13 236
[12] Duguay M A, Kokubun Y, Koch T L, Pfeiffer L 1986 Appl. Phys. Lett. 49 13
[13] Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J 2002 Opt. Lett. 27 1592
[14] Benabid F, Roberts P J 2011 J. Mod. Opt. 58 87
[15] Poletti F, Petrovich M N, Richardson D J 2013 Nanophotonics 2 315
[16] Birks T A, Bird D M, Hedley T D, Pottage J M, Russell P St J 2004 Opt. Express 12 69
[17] Pottage J M, Bird D M, Hedley T D, Birks T A, Knight J C, Russell P St J, Roberts P J 2003 Opt. Express 11 2854
[18] Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S 2002 Opt. Express 10 1314
[19] White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, de Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322
[20] Aghaie K Z, Fan S H, Digonnet M J F 2010 IEEE J. Quantum Elect. 46 920
[21] Yeh P, Yariv A, Marom E 1978 J. Opt. Soc. Am. 68 1196
[22] Marcatili E, Schmeltzer R 1964 Bell Syst. Tech. J. 43 1783
[23] Temelkuran B, Hart S D, Benoit G, Joannopoulos J, Fink Y 2002 Nature 420 650
[24] Mangan B, Farr L, Langford A, Roberts P J, Williams D P, Couny F, Lawman M, Mason M, Coupland S, Flea R, Sabert H, Birks T A, Knight J C, Russell P St J 2004 Optical Fiber Communication Conference Los Angeles, February 23-27, PD24
[25] Ding W, Wang Y Y 2014 Opt. Express 22 27242
[26] Ding W, Wang Y Y 2015 Front. Phys. 3 16
[27] Wang Y Y, Ding W 2017 Opt. Express 25 33122
[28] Gao S F, Wang Y Y, Ding W, Wang P 2018 Opt. Lett. 43 1347
[29] Gao S F, Wang Y Y, Liu X L, Hong C, Gu S, Wang P 2017 Opt. Lett. 42 61
[30] Gao S F, Wang Y Y, Liu X L, Ding W, Wang P 2016 Opt. Express 24 14801
[31] Cao L, Gao S F, Peng Z G, Wang X C, Wang Y Y, Wang P 2018 Opt. Express 26 5609
[32] Ding W, Wang Y Y 2015 Opt. Express 23 21165
[33] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P St J, Roberts P J, Allan D C 1999 Science 285 1537
[34] Marcuse D 1991 Theory of Dielectric Optical Waveguides (2nd Ed.) (London:Academic Press) pp7-19
[35] Michieletto M, Lyngs J K, Jakobsen C, Lgsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103
[36] Uebel P, Gnendi M C, Frosz M H, Ahmed G, Edavalath N N, Mnard J-M, Russell P St J 2016 Opt. Lett. 41 1961
[37] Hayes J R, Sandoghchi S R, Bradley T D, Liu Z, Slavik R, Gouveia M A, Wheeler N V, Jasion G, Chen Y, Fokoua E N, Petrovich M N, Richardson D J, Poletti F 2017 J. Lightwave Technol. 35 437
[38] Chafer M, Delahaye F, Amrani F, Debord B, Grme F, Benabid F 2018 Conference on Lasers and Electro-Optics San Jose, May 13-18, paper SF1K.3
[39] Liu X L, Ding W, Wang Y Y, Gao S F, Cao L, Feng X, Wang P 2017 Opt. Lett. 42 863
[40] Vincetti L, Setti V 2012 Opt. Express 20 14350
[41] Gao S F, Wang Y Y, Liu X L, Gu S, Peng Z G, Wang P, Du K M 2017 Chin. J. Lasers 44 0201012
[42] Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, Russell P St J 2006 Opt. Express 14 7329
[43] Fini J M, Nicholson J W, Mangan B, Meng L, Windeler R S, Monberg E M, DeSantolo A, DiMarcello F V, Mukasa K 2014 Nat. Commun. 5 5085
[44] Haakestad M W, Skaar J 2005 Opt. Express 13 9922
[45] Vincetti L, Setti V 2010 Opt. Express 18 23133
[46] Olszewski J, Szpulak M, Urbańczyk W 2005 Opt. Express 13 6015
[47] Debord B, Alharbi M, Vincetti L, Husakou A, Fourcade-Dutin C, Hoenninger C, Mottay E, Grme F, Benabid F 2014 Opt. Express 22 10735
[48] Elu U, Baudisch M, Pires H, Tani F, Frosz M H, Kttig F, Ermolov A, Russell P St J, Biegert J 2017 Optica 4 1024
[49] Balciunas T, Fourcade-Dutin C, Fan G, Witting T, Voronin A A, Zheltikov A M, Gerome F, Paulus G G, Baltuska A, Benabid F 2015 Nat. Commun. 6 6117
[50] Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavk R, Richardson D J 2013 Nat. Photon. 7 279
[51] Kttig F, Tani F, Biersach C M, Travers J C, Russell P St J 2017 Optica 4 1272
[52] Hassan M R A, Yu F, Wadsworth W J, Knight J C 2016 Optica 3 218
[53] Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629
[54] Okaba S, Takano T, Benabid F, Bradley T, Vincetti L, Maizelis Z, Yampol'skii V, Nori F, Katori H 2014 Nat. Commun. 5 4096
[55] Sprague M R, Michelberger P S, Champion T F M, England D G, Nunn J, Jin X M, Kolthammer W S, Abdolvand A, Russell P St J, Walmsley I A 2014 Nat. Photon. 8 287
[56] Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L, Liu W 2016 Opt. Express 24 22454
Catalog
Metrics
- Abstract views: 13832
- PDF Downloads: 853
- Cited By: 0