Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase separation pattern transition of three-domain vesicles

Ji Dan-Dan Zhang Shao-Guang

Citation:

Phase separation pattern transition of three-domain vesicles

Ji Dan-Dan, Zhang Shao-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on the Helfrich elastic curvature energy model, the stable shapes for the two patterns of three-domain phase separation are studied in detail for the experimental parameters with direct minimization method in order to explain the interesting experimental results by Yanagisawa et al. (2010 Phys. Rev. E 82 051928). According to their experimental results, there are two transition processes. In the first process, the three-domain vesicles are formed, which are metastable. After several tens of minutes, the three-domain vesicles begin to bud, which is the second process. In the first process, the three-domain vesicles are formed with two patterns. The pattern with the liquid-ordered (Lo) phase in the middle with roughly cylindrical shape and two cap-shape liquid disordered (Ld) domains on each side of the Lo domain is termed pattern I in our paper, and the pattern with Ld domain in the middle with roughly cylindrical shape and two cap-shape Lo domains on each side is referred to as pattern Ⅱ. In the same paper of M. Yanagisawa et al., an approximate calculation is made with the vesicle shapes of the two patterns approximately represented by spheroids. Their calculation shows that the transition point of the two patterns is at o* 0.27 in the case of = 0.02 (or v = 0.942) and = 50, in contrast with the experimental result of o* 0.5. Here o is the area fraction of Lo phase, and is the excess area (which is usually represented by reduced volume v in the previous literatures), is the reduced line tension at the boundary of two adjacent domains. Thus the problem comes down to whether the transition point of the two patterns conforming with the experimental result can be obtained by the Helfrich elastic curvature energy theory if one performs a more precise calculation. Our calculation is performed with the direct minimization method, with the two boundaries of domains constrained in two parallel planes, this is an effective method to guarantee the smoothness of the boundary. To allow the vesicle to have a sufficient freedom to evolve, only constraints of fixed reduced volume and area fraction are imposed (The usual implementation method of constraints with the enclosed volume and the area of each phase fixed is not appropriate in this case. It does not allow the vesicle to have enough freedom to evolve, since the two boundaries are constrained in two preassigned planes). For the experimental parameters of = 50 and = 0.02, the transition point for the two patterns is obtained to be o* = 0.49, which is quite close to the experimental result of o* = 0.5. In order to understand the budding process in the second process, a detailed study is also made with the direct minimization method. It is found that the budding process can occur only for high enough value ( qslant 7.0) and permeable membrane (in other words, no constraint of reduced volume is exerted). One possible mechanism of the permeation is the temporary passage caused by the defect in the bilayer membrane due to large reduced line tension, which needs to be further checked experimentally. The three-domain vesicles found in the experiment have rotational symmetry in the case of small (or large v). What is more, they have a reflective symmetric plane perpendicular to the rotational symmetric axis, thus only vesicles with Dh symmetry are considered in this paper.
      Corresponding author: Zhang Shao-Guang, zhangsg@snnu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. GK201302011) and the National Natural Science Foundation of China (Grant No. 10374063).
    [1]

    Lu K Q, Liu J X 2006 Intoduction of Soft Matter Physics (Beijing: Peking University Press) pp384-385 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论 (北京: 北京大学出版社)第384385 页]

    [2]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [3]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [4]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [5]

    Veatch S L, Keller S L 2002 Phys. Rev. Lett. 89 268101

    [6]

    Baumgart T, Hess S T, Webb W W 2003 Nature 425 821

    [7]

    Yanagisawa M, Imai M, Taninuchi T 2008 Phys. Rev. Lett. 100 148102

    [8]

    Semrau S, Idema T, Holtzer L, Schmidt T, Storm C 2008 Phys. Rev. Lett. 100 088101

    [9]

    Yanagisawa M, Imai M, Taninuchi T 2010 Phys. Rev. E 82 051928

    [10]

    Esposito C, Tian A, Melamed S, Johnson C, Tee S T, Baumgart T 2007 Biophys. J. 93 3169

    [11]

    Tian A, Johnson C, Wang W, Baumgart T 2007 Phys. Rev. Lett. 98 208102

    [12]

    Honerkamp-Smith A R, Cicuta P, Collins M D, Veatch S L, den Nijs M, Schick M, Keller S L 2008 Biophys. J. 95 236

    [13]

    Ouyang Z C 1990 Phys. Rev. A 41 4517

    [14]

    Naito H, Okuda M, Ouyang Z C 1993 Phys. Rev. E 48 2304

    [15]

    Naito H, Okuda M, Ouyang Z C 1995 Phys. Rev. Lett. 74 4345

    [16]

    Jlicher F, Lipowsky R 1996 Phys. Rev. E 53 2670

    [17]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [18]

    Zhou W B, Zhang S G 2015 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 43 43 (in Chinese) [周五斌, 张劭光 2015 陕西师范大学学报 (自然科学版) 43 43]

    [19]

    Gutlederer E, Gruhn T, Lipowsky R 2009 Soft Matter 5 3303

    [20]

    Seifert U, Berndl K, Lipowsky R 1991 Phys. Rev. A 44 1182

  • [1]

    Lu K Q, Liu J X 2006 Intoduction of Soft Matter Physics (Beijing: Peking University Press) pp384-385 (in Chinese) [陆坤权, 刘寄星 2006 软物质物理学导论 (北京: 北京大学出版社)第384385 页]

    [2]

    Helfrich W 1973 Z. Naturforsch. C 28 693

    [3]

    Ouyang Z C, Helfrich W 1987 Phys. Rev. Lett. 59 2486

    [4]

    Ouyang Z C, Helfrich W 1989 Phys. Rev. A 39 5280

    [5]

    Veatch S L, Keller S L 2002 Phys. Rev. Lett. 89 268101

    [6]

    Baumgart T, Hess S T, Webb W W 2003 Nature 425 821

    [7]

    Yanagisawa M, Imai M, Taninuchi T 2008 Phys. Rev. Lett. 100 148102

    [8]

    Semrau S, Idema T, Holtzer L, Schmidt T, Storm C 2008 Phys. Rev. Lett. 100 088101

    [9]

    Yanagisawa M, Imai M, Taninuchi T 2010 Phys. Rev. E 82 051928

    [10]

    Esposito C, Tian A, Melamed S, Johnson C, Tee S T, Baumgart T 2007 Biophys. J. 93 3169

    [11]

    Tian A, Johnson C, Wang W, Baumgart T 2007 Phys. Rev. Lett. 98 208102

    [12]

    Honerkamp-Smith A R, Cicuta P, Collins M D, Veatch S L, den Nijs M, Schick M, Keller S L 2008 Biophys. J. 95 236

    [13]

    Ouyang Z C 1990 Phys. Rev. A 41 4517

    [14]

    Naito H, Okuda M, Ouyang Z C 1993 Phys. Rev. E 48 2304

    [15]

    Naito H, Okuda M, Ouyang Z C 1995 Phys. Rev. Lett. 74 4345

    [16]

    Jlicher F, Lipowsky R 1996 Phys. Rev. E 53 2670

    [17]

    Jlicher F, Lipowsky R 1993 Phys. Rev. Lett. 70 2964

    [18]

    Zhou W B, Zhang S G 2015 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 43 43 (in Chinese) [周五斌, 张劭光 2015 陕西师范大学学报 (自然科学版) 43 43]

    [19]

    Gutlederer E, Gruhn T, Lipowsky R 2009 Soft Matter 5 3303

    [20]

    Seifert U, Berndl K, Lipowsky R 1991 Phys. Rev. A 44 1182

  • [1] Wang Chang-Chao, Nie Qing-Miao, Shi Liang, Chen Nai-Bo, Hu Lai-Gui, Yan Bo. Kinetic Monte Carlo simulation of selective area growth of mix deposited organic molecules. Acta Physica Sinica, 2024, 73(12): 126801. doi: 10.7498/aps.73.20231779
    [2] He Hua-Dan, Zhong Qi-Chao, Xie Wen-Jun. Evaporation and phase separation of acoustically levitated aqueous two-phase-system drops. Acta Physica Sinica, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [3] Wang Jing, Jiao Yang, Tian Wen-De, Chen Kang. Phase separation phenomenon in mixed system composed of low- and high-inertia active particles. Acta Physica Sinica, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [4] Liu Bo-Yang, Song Wen-Tao, Liu Zheng-Hui, Sun Xiao-Juan, Wang Kai-Ming, Wang Ya-Kun, Zhang Chun-Yu, Chen Ke-Bei, Xu Geng-Zhao, Xu Ke, Li Da-Bing. Characterization of phase separation on AlGaN surfaces by in-situ photoluminescence spectroscopy and high spatially resolved surface potential images. Acta Physica Sinica, 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [5] Liang Yi-Ran, Liang Qing. Molecular simulation of interaction between charged nanoparticles and phase-separated biomembranes containning charged lipids. Acta Physica Sinica, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] Duan Hua, Li Jian-Feng, Zhang Hong-Dong. Theoretical simulations of deformation coupling with phase separation of two-component charged vesicles in a two-dimensional plane. Acta Physica Sinica, 2018, 67(3): 038701. doi: 10.7498/aps.67.20171740
    [7] Xiang Jun-You, Wang Zhi-Guo, Xu Bao, Sun Yun-Bin, Wu Hong-Ye, Zhao Jian-Jun, Lu Yi. Phase separation of bilayered perovskite manganite (La1-xGdx)4/3Sr5/3Mn2 O7 (x=0, 0.05). Acta Physica Sinica, 2014, 63(15): 157501. doi: 10.7498/aps.63.157501
    [8] Ren Qun, Wang Nan, Zhang Li, Wang Jian-Yuan, Zheng Ya-Ping, Yao Wen-Jing. The effects of spinodal decomposition and nucleation on phase separation. Acta Physica Sinica, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [9] Wang Qiang. Charge order and phase separation in Bi0.5Ca0.5Mn1-xCoxO3 system. Acta Physica Sinica, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [10] Wang Rui-Min, Chen Guang-De. Ultraviolet resonant Raman scattering in InGaN films. Acta Physica Sinica, 2009, 58(2): 1252-1256. doi: 10.7498/aps.58.1252
    [11] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [12] Zhang Cheng-Guo, Zhang Xiao-Zhong. Ca clustering and its stability in La1-xCaxMnO3(x≤1/3). Acta Physica Sinica, 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [13] Li Mei-Li, Zhang Di, Sun Hong-Ning, Fu Xing-Ye, Yao Xiu-Wei, Li Cong, Duan Yong-Ping, Yan Yuan, Mu Hong-Chen, Sun Min-Hua. Molecular dynamics study of the phase separation and diffusion in Lennard-Jones binary liquid. Acta Physica Sinica, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [14] Liu Rui, Li Yin-Chang, Hou Mei-Ying. Phase separation in a three-dimensional granular gas system. Acta Physica Sinica, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [15] Zhai Wei, Wang Nan, Wei Bing-Bo. Direct observation of phase separation in binary monotectic solution. Acta Physica Sinica, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] Wang Rui-Min, Chen Guang-De, Zhu You-Zhang. Micro-Raman scattering study of hexagonal InGaN epitaxial layer. Acta Physica Sinica, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [17] Jiang Zhong-Ying, Yu Wei-Zhong, Huang Yan-Jun, Xia Yuan-Fu, Ma Shu-Xin. Phase behavior and thermal dynamic properties of free volume on SMMA/SMA copolymer blend studied by PALS method. Acta Physica Sinica, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [18] Liu Xiang-Rong, Wang Nan, Wei Bing-Bo. Rapid growth of Cu-Pb monotectics under containerless condition. Acta Physica Sinica, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [19] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [20] Feng Wen-Qiang, Zhu Yue-Jin. The driven-effect of external fluctuation on phase separation of binary mixtures. Acta Physica Sinica, 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
Metrics
  • Abstract views:  5696
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2018
  • Accepted Date:  15 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回