-
Laminate piezoelectric (PE)/piezomagnetic (PM) composites consisting of alternating PE and PM layers can facilitate the conversion of energy between electric and magnetic fields, i.e., they possess the magneto-electric (ME) coupling effects, which recently has attracted much attention due to the huge potential applications in the field of high technology. The PE/PM phononic crystal is an ideal material for manufacturing high-tech precision parts such as resonator components, magnetoelectric sensors, weak magnetic field detectors, electric field tunable filters and magnetic field probes. In the practical applications, the adhesive interfaces of PE/PM phononic crystals are prone to deformation and failure during their use, because of the big difference between PE and PM material. In this paper, the magneto-electro-elastic (MEE) interlayer of magneto-electro-mechanical coupling is introduced into the PE/PM phononic crystal. The thickness of the MEE interlayer, the volume fraction of the piezoelectric material in the MEE interlayer and the type of the piezoelectric materials in the MEE interlayer are changed separately, with the thickness of the unit cell kept at a fixed value. The dispersion relation between the k and the is obtained by using the transfer matrix method and Bloch theorem. The influence of MEE interlayer on the band gap characteristics of PE/PM phononic crystal is studied by the dispersion relation diagram. The results show that as the thickness of the MEE interlayer increases, the central frequency of the band gaps shifts toward a higher frequency and the width of band gap becomes wider. As the volume fraction of the piezoelectric material increases, the center frequency and the width of the first band gap decrease. However, the width of the second band gap increases, and the width of the third band gap remains unchanged. The type of piezoelectric material in the MEE interlayer has an obvious influence on both the width and the central frequency of the band gaps. The effect of MEE interlayer on the central frequency of band gap of PE/PM phononic crystal is more significant in the high frequency region than in the low frequency region. Therefore, the width and central frequency of the band gaps can be adjusted to a certain extent by adding different MEE interlayers into the phononic crystal structure when designed.
-
Keywords:
- magneto-electro-mechanical coupling /
- magneto-electro-elastic interlayer /
- piezoelectric/piezomagnetic phononic crystals /
- band gap characteristics
[1] Gao G Q, Ma S L, Jin F, Jin D F, Lu T X 2010 Acta Phys. Sin. 59 393 (in Chinese) [高国钦, 马守林, 金峰, 金东范, 卢天健 2010 物理学报 59 393]
[2] Spaldin N A, Fiebig M 2005 Science 309 391
[3] Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]
[4] Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[5] Zhang X, Liu Z, Liu Y, Wu F 2003 Phys. Lett. A 313 455
[6] Wang G, Yu D, Wen J, Liu F, Wen X 2004 Phys. Lett. A 327 512
[7] Wu L Y, Wu M L, Chen L W 2009 Smart. Mat. Str. 18 015011
[8] Manzanaresmartnez B, Snchezdehesa J, Hkansson A 2004 Appl. Phys. Lett. 85 154
[9] Boudouti E H E, Hassouani Y E, Aynaou H, DjafariRouhani B 2009 J. Acoust. Soc. Am. 123 3040
[10] Qian Z, Jin F, Wang Z, Kishimoto K 2004 Int. J. Eng. Sci. 42 673
[11] Pang Y, Liu J X, Wang Y S, Fang D N 2008 Acta Mech. Solida Sin. 21 483
[12] Lan M, Wei P J 2014 Acta Mech. 225 1779
[13] Pang Y, Wang Y S, Liu J X, Fang D N 2010 Smart Mater. Struct. 19 055012
[14] Guo X, Wei P J, Lan M, Li L 2016 Ultrasonics 70 158
[15] Zhu J, Chen W, Ye G 2012 Ultrasonics 52 125
[16] Guo X, Wei P J, Li L, Lan M 2018 Appl. Math. Model. 55 569
[17] Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids. Struct. 45 4203
[18] Wang Y Z, Li F M, Kishimoto K, Wang Y S, Huang W H 2009 Wave Motion 46 47
[19] Wang Y Z, Li F M 2012 Chin. Phys. Lett. 29 034301
[20] Pang Y, Gao J S, Liu J X 2014 Ultrasonics 54 1341
[21] Nie G Q, Liu J X, Fang X Q, An Z J 2012 Acta Mech. 223 1999
-
[1] Gao G Q, Ma S L, Jin F, Jin D F, Lu T X 2010 Acta Phys. Sin. 59 393 (in Chinese) [高国钦, 马守林, 金峰, 金东范, 卢天健 2010 物理学报 59 393]
[2] Spaldin N A, Fiebig M 2005 Science 309 391
[3] Wu J, Bai X C, Xiao Y, Geng M X, Yu D L, Wen J H 2016 Acta Phys. Sin. 65 064602 (in Chinese) [吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿 2016 物理学报 65 064602]
[4] Nan C W, Bichurin M I, Dong S, Viehland D, Srinivasan G 2008 J. Appl. Phys. 103 031101
[5] Zhang X, Liu Z, Liu Y, Wu F 2003 Phys. Lett. A 313 455
[6] Wang G, Yu D, Wen J, Liu F, Wen X 2004 Phys. Lett. A 327 512
[7] Wu L Y, Wu M L, Chen L W 2009 Smart. Mat. Str. 18 015011
[8] Manzanaresmartnez B, Snchezdehesa J, Hkansson A 2004 Appl. Phys. Lett. 85 154
[9] Boudouti E H E, Hassouani Y E, Aynaou H, DjafariRouhani B 2009 J. Acoust. Soc. Am. 123 3040
[10] Qian Z, Jin F, Wang Z, Kishimoto K 2004 Int. J. Eng. Sci. 42 673
[11] Pang Y, Liu J X, Wang Y S, Fang D N 2008 Acta Mech. Solida Sin. 21 483
[12] Lan M, Wei P J 2014 Acta Mech. 225 1779
[13] Pang Y, Wang Y S, Liu J X, Fang D N 2010 Smart Mater. Struct. 19 055012
[14] Guo X, Wei P J, Lan M, Li L 2016 Ultrasonics 70 158
[15] Zhu J, Chen W, Ye G 2012 Ultrasonics 52 125
[16] Guo X, Wei P J, Li L, Lan M 2018 Appl. Math. Model. 55 569
[17] Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids. Struct. 45 4203
[18] Wang Y Z, Li F M, Kishimoto K, Wang Y S, Huang W H 2009 Wave Motion 46 47
[19] Wang Y Z, Li F M 2012 Chin. Phys. Lett. 29 034301
[20] Pang Y, Gao J S, Liu J X 2014 Ultrasonics 54 1341
[21] Nie G Q, Liu J X, Fang X Q, An Z J 2012 Acta Mech. 223 1999
Catalog
Metrics
- Abstract views: 6302
- PDF Downloads: 135
- Cited By: 0