Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigation of cavity formation mechanism for micron-waterdrop impact on deep pool

Pei Chuan-Kang Wei Bing-Qian

Citation:

Numerical investigation of cavity formation mechanism for micron-waterdrop impact on deep pool

Pei Chuan-Kang, Wei Bing-Qian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As one of the most fundamental and iconic fluid motion, droplet impact exists widely in scientific technologies and natural environment, and the phenomenon has been studied both for fundamental mechanism and for industrial applications in aerospace engineering, inkjet printing, agricultural irrigation and hydraulic structure erosion. Therefore, it is of great significance to study such basic movements for understanding the interfacial deformation of gas and liquid flow and improving the applications of droplet impact movement in engineering. Droplet impacting on a deep liquid pool has been extensively investigated for droplets with millimeter diameter. In this article, focusing on the cavity formation mechanism during a Micron-sized waterdrop impact on a deep pool, we perform systematic numerical simulations with adaptive mesh refinement technique and volume of fluid method to study the impact of a 290 μm water droplet on a deep water pool at velocities in a range of 2.5-6.5 m/s. The free surface motion, geometric variation of the cavity, local pressure field and vorticity field at selected times are presented to identify the pool-drop water mixing, capillary wave propagation, cavity formation, vortex ring generation and bubble entrapment phenomenon, and the dynamic mechanism of cavity motion is further explored. It is found that under the premise of neglecting the surface tension effects on the cavity whose depth is in a range of h∈(D, hmax), where D is the radius of initial droplet and hmax is the maximum depth, the cavity growth time to reach its maximum depth still scales as t∝h5/2, where t is time, but in the end, the formation of the bottom of the cavity is driven by capillary waves. There are two types of the initial cavity shapes: one is U-shape and the other is hemispherical shape, the former one generally changes into V-shape, and in the latter case, the bottom of the cavity will gradually transform into cylindrical shape, resulting in a thin jet and possible bubble entrapment. Cavity collapse is closely related to capillary wave propagation. When the impact velocity is low (Fr=567.1, Re=1595, We=121.8), the low-pressure zone is initially generated at the junction between the cavity sidewall and the bottom, a large vortex ring is then generated near the free surface and the bottom of the cavity, respectively. Under high impact velocities (Fr=792.1, Re=1885, We=170.2), the thin jet is observed, the generation of the vortex ring is suppressed. The low-pressure zone is first generated at the junction between the wave bottom and the cavity sidewall, after the cavity becomes cylindrical, the cavity collapses before the capillary wave arrives at the bottom, causing a bubble entrapment.
      Corresponding author: Wei Bing-Qian, weibingqian@xaut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51479163) and the Water Science and Technology Program of Shaanxi Province, China (Grant No. 2014skj-14).
    [1]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159

    [2]

    Jomaa S, Barry D A, Brovelli A, Sander G C, Parlange J Y, Heng B C P, Tromp-van Meerveld H J 2010 J. Hydrol. 395 117

    [3]

    Ferreira A G, Larock B E, Singer M J 1985 Soil Sci. Soc. Am. J. 49 1502

    [4]

    Takagaki N, Kurose R, Baba Y, Nakajima Y, Komori S 2014 Int. J. Multiph. Flow 65 1

    [5]

    Worthington A M 1908 A Study of Splashes (London: Longmans, Green) pp129-132

    [6]

    Chapman D S, Critchlow P R 1967 J. Fluid Mech. 29 177

    [7]

    Dooley B S, Warncke A E, Gharib M, Tryggvason G 1997 Exp. Fluids 22 369

    [8]

    Liow J 2001 J. Fluid Mech. 427 73

    [9]

    Michon G J, Josserand C, Séon T 2017 Phys. Rev. Fluids 2 023601

    [10]

    Zhbankova S L, Kolpakov A V 1990 Fluid Dyn. 25 470

    [11]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [12]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [13]

    Sussman M, Puckett E G 2000 J. Comput. Phys. 162 301

    [14]

    Yue P, Zhou C, Feng J J 2006 Phys. Fluids 18 102102

    [15]

    Ray B, Biswas G, Sharma A 2010 J. Fluid Mech. 655 72

    [16]

    Castillo-Orozco E, Davanlou A, Choudhury P K, Kumar R 2015 Phys. Rev. E 92 053022

    [17]

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704 (in Chinese) [戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704]

    [18]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese) [黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702]

    [19]

    Zhao H, Brunsvold A, Munkejord S T 2011 Exp. Fluids 50 621

    [20]

    Popinet S 2003 J. Comput. Phys. 190 572

    [21]

    Popinet S 2009 J. Comput. Phys. 228 5838

    [22]

    Agbaglah G, Delaux S, Fuster D, Hoepffner J, Josserand C, Popinet S, Ray P, Scardovelli R, Zaleski S 2011 C. R. Mec. 339 194

    [23]

    Morton D, Rudman M, Jong-Leng L 2000 Phys. Fluids 12 747

    [24]

    Ray B, Biswas G, Sharma A 2015 J. Fluid Mech. 768 492

    [25]

    Berberović E, van Hinsberg N P, Jakirli S, Roisman I V, Tropea C 2009 Phys. Rev. E 79 036306

  • [1]

    Yarin A L 2006 Annu. Rev. Fluid Mech. 38 159

    [2]

    Jomaa S, Barry D A, Brovelli A, Sander G C, Parlange J Y, Heng B C P, Tromp-van Meerveld H J 2010 J. Hydrol. 395 117

    [3]

    Ferreira A G, Larock B E, Singer M J 1985 Soil Sci. Soc. Am. J. 49 1502

    [4]

    Takagaki N, Kurose R, Baba Y, Nakajima Y, Komori S 2014 Int. J. Multiph. Flow 65 1

    [5]

    Worthington A M 1908 A Study of Splashes (London: Longmans, Green) pp129-132

    [6]

    Chapman D S, Critchlow P R 1967 J. Fluid Mech. 29 177

    [7]

    Dooley B S, Warncke A E, Gharib M, Tryggvason G 1997 Exp. Fluids 22 369

    [8]

    Liow J 2001 J. Fluid Mech. 427 73

    [9]

    Michon G J, Josserand C, Séon T 2017 Phys. Rev. Fluids 2 023601

    [10]

    Zhbankova S L, Kolpakov A V 1990 Fluid Dyn. 25 470

    [11]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 39 201

    [12]

    Osher S, Sethian J A 1988 J. Comput. Phys. 79 12

    [13]

    Sussman M, Puckett E G 2000 J. Comput. Phys. 162 301

    [14]

    Yue P, Zhou C, Feng J J 2006 Phys. Fluids 18 102102

    [15]

    Ray B, Biswas G, Sharma A 2010 J. Fluid Mech. 655 72

    [16]

    Castillo-Orozco E, Davanlou A, Choudhury P K, Kumar R 2015 Phys. Rev. E 92 053022

    [17]

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704 (in Chinese) [戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704]

    [18]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese) [黄虎, 洪宁, 梁宏, 施保昌, 柴振华 2016 物理学报 65 084702]

    [19]

    Zhao H, Brunsvold A, Munkejord S T 2011 Exp. Fluids 50 621

    [20]

    Popinet S 2003 J. Comput. Phys. 190 572

    [21]

    Popinet S 2009 J. Comput. Phys. 228 5838

    [22]

    Agbaglah G, Delaux S, Fuster D, Hoepffner J, Josserand C, Popinet S, Ray P, Scardovelli R, Zaleski S 2011 C. R. Mec. 339 194

    [23]

    Morton D, Rudman M, Jong-Leng L 2000 Phys. Fluids 12 747

    [24]

    Ray B, Biswas G, Sharma A 2015 J. Fluid Mech. 768 492

    [25]

    Berberović E, van Hinsberg N P, Jakirli S, Roisman I V, Tropea C 2009 Phys. Rev. E 79 036306

  • [1] Wang Hao, Xu Jin-Liang. Interaction and motion of two neighboring Leidenfrost droplets on oil surface. Acta Physica Sinica, 2023, 72(5): 054401. doi: 10.7498/aps.72.20221822
    [2] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [3] Fang Long, Chen Guo-Ding. Temperature charateristics of droplet impacting on static hot pool. Acta Physica Sinica, 2019, 68(23): 234702. doi: 10.7498/aps.68.20190809
    [4] Yang Hai-Jun,  Wu Feng,  Fang Hai-Ping,  Hu Jun,  Hou Zheng-Chi. Mechanism of soil environmental regulation by aerated drip irrigation. Acta Physica Sinica, 2019, 68(1): 019201. doi: 10.7498/aps.68.20181357
    [5] Pei Chuan-Kang, Wei Bing-Qian, Zuo Juan-Li, Yang Hong. Numerical investigation of large bubble entrapment mechanism for micron droplet impact on deep pool. Acta Physica Sinica, 2019, 68(20): 204703. doi: 10.7498/aps.68.20190541
    [6] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [7] Wang Hao-Ruo, Zhang Chong, Zhang Hong-Chao, Shen Zhong-Hua, Ni Xiao-Wu, Lu Jian. Spatiotemporal distributions of plasma and optical field during the interaction between ultra-short laser pulses and water nanodroplets. Acta Physica Sinica, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [8] Sun Chuan-Qin, Huang Hai-Shen, Bi Qing-Ling, Lü Yong-Jun. Wetting kinetics of water droplets on the metallic glass. Acta Physica Sinica, 2017, 66(17): 176101. doi: 10.7498/aps.66.176101
    [9] Hu Hai-Bao, He Qiang, Yu Si-Xiao, Zhang Zhao-Zhu, Song Dong. Freezing behavior of droplet impacting on cold surfaces. Acta Physica Sinica, 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [10] Zhang Kai, Lu Yong-Jun, Wang Feng-Hui. Motion of the nanodrops driven by energy gradient on surfaces with different microstructures. Acta Physica Sinica, 2015, 64(6): 064703. doi: 10.7498/aps.64.064703
    [11] Li Da-Ming, Wang Zhi-Chao, Bai Lin, Wang Xiao. Investigations on the process of droplet impact on an orifice plate. Acta Physica Sinica, 2013, 62(19): 194704. doi: 10.7498/aps.62.194704
    [12] Yao Yi, Zhou Zhe-Wei, Hu Guo-Hui. Movement of a droplet on a structured substrate: A dissipative particle dynamics simulation study. Acta Physica Sinica, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [13] Shi Jian, Zhou Lin, Yang Long-Ying. Influence of sea spray droplets on drag coefficient in high wind speed. Acta Physica Sinica, 2013, 62(3): 039201. doi: 10.7498/aps.62.039201
    [14] Zhang Ming-kun, Chen Shuo, Shang Zhi. Numerical simulation of a droplet motion in a grooved microchannel. Acta Physica Sinica, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [15] Tong Zhi-Hui. Direct numerical simulation on the influence of solid-liquid density ratio on the particle sedimentation under thermal convection. Acta Physica Sinica, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [16] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [17] Li Ling, Li Bo-Zang. The energy density in a one-dimensional cavity with two moving boundaries. Acta Physica Sinica, 2003, 52(11): 2762-2767. doi: 10.7498/aps.52.2762
    [18] Chen Ruo-Hang, Kong Ling-Jiang, He Yun, Li Hua-Bing, Liu Mu-Ren. . Acta Physica Sinica, 2000, 49(4): 631-635. doi: 10.7498/aps.49.631
    [19] WU FENG, WANG BING-HONG, YANG YUE-GUI, YAO BIN. RELATIONSHIP BETWEEN THE BROWNIAN MOTION OF THE SUSPENDED PARTICLES IN ERF AND THEIR AGGREGATION. Acta Physica Sinica, 1996, 45(3): 403-408. doi: 10.7498/aps.45.403
    [20] LOU ZHENG-MING. AN ELECTRON TRANSPORT THEORY OF THE CAVITY IONIZATION. Acta Physica Sinica, 1980, 29(2): 205-213. doi: 10.7498/aps.29.205
Metrics
  • Abstract views:  5766
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  28 July 2018
  • Accepted Date:  20 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回