-
Gallium arsenide (GaAs) nanowires are epitaxially grown on an N-type Si (111) substrate by molecular beam epitaxy according to self-catalysis growth mechanism. Testing the grown nanowires by scanning electron microscope, it is found that the nanowires have high verticality and good uniformity in length and diameter. Variable temperature photoluminescence (PL) spectroscopy is used on nanowires. The test results show that the two luminescence peaks P1 and P2 at 10 K are located at 1.493 eV and 1.516 eV, respectively, and it is inferred that it may be the luminescence caused by WZ/ZB miscible structure and the free exciton luminescence peak. These two peaks present red-shift with temperature increasing. The temperature change curve is obtained by fitting the Varshni formula. The variable power PL spectroscopy test finds that the peak position of P1 position is blue shifted with power increasing, but the peak position of the P2 remains unchanged. By fitting, it is found that the P1 peak position is linearly related to power to the power of 1/3, and it is judged that it may be type-II luminescence caused by WZ/ZB mixed phase structure. At the same time, the peak position of the P2 position is fitted and parameter α approximately equals 1.56, therefore P2 is a free exciton luminescence. A Raman spectrum test is performed on the nanowires, and an E2 phonon peak unique to the GaAs WZ structure is found from the spectrum. It is proved that the grown nanowires possess WZ/ZB mixed phase structures, and the hybrid phase structure of nanowires is more intuitively observed by high resolution transmission electron microscopy.
-
Keywords:
- GaAs nanowires /
- wurtzite/zincblende mixed phase structure /
- photoluminescence spectra /
- Raman spectra
[1] Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688Google Scholar
[2] Farrell A C, Senanayake P, Meng X, Hsieh N Y, Huffaker D L 2017 Nano Lett. 17 2420Google Scholar
[3] Cammi D, Rodiek B, Zimmermann K, Kück S, Voss T 2017 J. Mater. Res. 32 2464Google Scholar
[4] Tchernycheva M, Lavenus P, Zhang H, Babichev A V, Jacopin G, Shahmohammadi M, Julien F H, Ciechonski R, Vescovi G, Kryliouk O 2014 Nano Lett. 14 2456Google Scholar
[5] Hussain L, Karimi M, Berg A, Jain V, Borgström M T, Gustafsson A, Samuelson L, Pettersson H 2017 Nanotechnology 28 485205Google Scholar
[6] Ullah A R, Meyer F, Gluschke J G, Naureen S, Caroff P, Krogstrup P, Nygård J, Micolich A P 2018 Nano Lett. 18 5673Google Scholar
[7] Price A, Martinez A 2015 J. Appl. Phys. 117 164501Google Scholar
[8] Yang W, Pan D, Shen R, Wang X, Zhao J, Chen Q 2018 Nanotechnology 29 415230
[9] 毛宏伟, 刘一先, 李富铭 1990 中国激光 17 538Google Scholar
Mao H W, Liu Y X, Li F M 1990 Chin. J. Las. 17 538Google Scholar
[10] Han N, Wang F, Hou J J, Yip S, Lin H, Fang M, Xiu F, Shi X L, Hung T F, Ho J C 2012 Cryst. Growth Des. 12 6243Google Scholar
[11] 夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002
Xia N, Fang X, Rong T Y, Wang D K, Fang D, Tang J L, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002
[12] Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar
[13] Hoang T B, Zhou H, Moses A F, Dheeraj D L, Helvoor A, Fimland B O, Weman H 2009 Mater. Res. Soc. Symp. Proc. 1144
[14] Vainorius N, Jacobsson D, Lehmann S, Gustafsson A, Dick K A, Samuelson L, Pistol M E 2014 Phys. Rev. B 89 165423Google Scholar
[15] Kinzel J B, Schülein F J, Weiß M, Janker L, Bühler D D, Heigl M, Rudolph D, Morkötter S, Döblinger M, Bichler M, Abstreiter G, Finley J J, Wixforth A, Koblmüller G, Abstreiter G 2016 ACS Nano 10 4942Google Scholar
[16] Senichev A, Corfdir P, Brandt O, Ramsteiner M, Breuer S, Schilling J, Geelhaar L, Werner P 2018 Nano Res. 1 14
[17] Mukherjee A, Ghosh S, Breuer S, Jahn U, Geelhaar L, Grahn H T 2017 J. Appl. Phys. 117 054308
[18] Kim H, Ren D, Farrell A C, Huffaker D L 2018 Nanotechnology 29 085601Google Scholar
[19] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103Google Scholar
Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103Google Scholar
[20] Liu Y, Peng Y, Guo J, La D, Xu Z 2018 AIP Adv. 8 055108Google Scholar
[21] Zhou C, Zheng K, Liao Z M, Chen P P, Lu W, Zou J 2017 J. Mater. Chem. C 5 5257Google Scholar
[22] Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A Grange R 2016 Nano Lett. 16 6290Google Scholar
[23] Bussone G, Schäfer-Eberwein H, Dimakis E, Biermanns A, Carbone D, Tahraoui A, Geelhaar L, Bolívar P H, Schülli T U, Pietsch U 2015 Nano Lett. 15 981Google Scholar
[24] Fontcuberta i Morral A, Colombo C, Abstreiter G, Arbiol J, Morante J R 2008 Appl. Phys. Lett. 92 063112Google Scholar
[25] Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E 2010 Nanotechnology 21 435601Google Scholar
[26] Ramsteiner M, Brandt O, Kusch P, Breuer S, Reich S, Geelhaar L 2013 Appl. Phys. Lett. 103 043121Google Scholar
[27] Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar
[28] Falcão B P, Leitão J P, Correia M R, Soares M R, Morales F M, Mánuel J M, Garcia R, Gustafsson A, Moreira M V B, de Oliveira A G, González J C 2013 J. Appl. Phys. 114 183508Google Scholar
[29] Rudolph D, Schweickert L, Morkötter S, Loitsch B, Hertenberger S, Becker J, Bichler M, Abstreiter G, Finley J J, Koblmüller G 2013 Appl. Phys. Lett. 105 033111
[30] Varshni Y P 1967 Physica 34 149Google Scholar
[31] Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar
[32] Jin S, Zheng Y, Li A 1997 J. Appl. Phys. 82 3870Google Scholar
[33] Fang X, Wei Z P, Chen R, Tang J L, Zhao H F, Zhang L G, Zhao D X, Fang D, Li J H, Fang F, Chu X Y, Wang X H 2015 ACS Appl. Mater. Inter. 7 10331Google Scholar
[34] Begum N, Piccin M, Jabeen F, Bais G, Rubini S, Martelli F, Bhatti A S 2008 J. Appl. Phys. 104 104311Google Scholar
[35] Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar
-
图 1 GaAs纳米线形貌及纳米线长度直径分布 (a) GaAs纳米线侧面SEM图像; (b) GaAs纳米线长度分布统计图; (c) GaAs纳米线平面SEM图像, 插图为纳米线形状; (d) GaAs纳米线直径分布统计图
Figure 1. The morphology, length, and diameter distribution of GaAs nanowires: (a) Side SEM image of GaAs nanowires; (b) GaAs nanowires length distribution; (c) plane SEM image of GaAs nanowires, inset is the shape of the nanowire; (d) GaAs nanowires diameter distribution
图 3 变功率PL光谱测试图 (a)不同功率下PL光谱曲线, 插图为P2, P1峰强比随功率变化曲线; (b) P1峰位与P1/3的关系; (c) P2峰强与功率的关系
Figure 3. Variable power PL spectrum: (a) The PL spectral curve with different power is illustrated as the peak ratio of P2, P1 changing with power; (b) the relationship between P1 peak and P1/3; (c) the relationship between P2 peak intensity and power
-
[1] Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688Google Scholar
[2] Farrell A C, Senanayake P, Meng X, Hsieh N Y, Huffaker D L 2017 Nano Lett. 17 2420Google Scholar
[3] Cammi D, Rodiek B, Zimmermann K, Kück S, Voss T 2017 J. Mater. Res. 32 2464Google Scholar
[4] Tchernycheva M, Lavenus P, Zhang H, Babichev A V, Jacopin G, Shahmohammadi M, Julien F H, Ciechonski R, Vescovi G, Kryliouk O 2014 Nano Lett. 14 2456Google Scholar
[5] Hussain L, Karimi M, Berg A, Jain V, Borgström M T, Gustafsson A, Samuelson L, Pettersson H 2017 Nanotechnology 28 485205Google Scholar
[6] Ullah A R, Meyer F, Gluschke J G, Naureen S, Caroff P, Krogstrup P, Nygård J, Micolich A P 2018 Nano Lett. 18 5673Google Scholar
[7] Price A, Martinez A 2015 J. Appl. Phys. 117 164501Google Scholar
[8] Yang W, Pan D, Shen R, Wang X, Zhao J, Chen Q 2018 Nanotechnology 29 415230
[9] 毛宏伟, 刘一先, 李富铭 1990 中国激光 17 538Google Scholar
Mao H W, Liu Y X, Li F M 1990 Chin. J. Las. 17 538Google Scholar
[10] Han N, Wang F, Hou J J, Yip S, Lin H, Fang M, Xiu F, Shi X L, Hung T F, Ho J C 2012 Cryst. Growth Des. 12 6243Google Scholar
[11] 夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002
Xia N, Fang X, Rong T Y, Wang D K, Fang D, Tang J L, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002
[12] Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar
[13] Hoang T B, Zhou H, Moses A F, Dheeraj D L, Helvoor A, Fimland B O, Weman H 2009 Mater. Res. Soc. Symp. Proc. 1144
[14] Vainorius N, Jacobsson D, Lehmann S, Gustafsson A, Dick K A, Samuelson L, Pistol M E 2014 Phys. Rev. B 89 165423Google Scholar
[15] Kinzel J B, Schülein F J, Weiß M, Janker L, Bühler D D, Heigl M, Rudolph D, Morkötter S, Döblinger M, Bichler M, Abstreiter G, Finley J J, Wixforth A, Koblmüller G, Abstreiter G 2016 ACS Nano 10 4942Google Scholar
[16] Senichev A, Corfdir P, Brandt O, Ramsteiner M, Breuer S, Schilling J, Geelhaar L, Werner P 2018 Nano Res. 1 14
[17] Mukherjee A, Ghosh S, Breuer S, Jahn U, Geelhaar L, Grahn H T 2017 J. Appl. Phys. 117 054308
[18] Kim H, Ren D, Farrell A C, Huffaker D L 2018 Nanotechnology 29 085601Google Scholar
[19] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103Google Scholar
Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103Google Scholar
[20] Liu Y, Peng Y, Guo J, La D, Xu Z 2018 AIP Adv. 8 055108Google Scholar
[21] Zhou C, Zheng K, Liao Z M, Chen P P, Lu W, Zou J 2017 J. Mater. Chem. C 5 5257Google Scholar
[22] Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A Grange R 2016 Nano Lett. 16 6290Google Scholar
[23] Bussone G, Schäfer-Eberwein H, Dimakis E, Biermanns A, Carbone D, Tahraoui A, Geelhaar L, Bolívar P H, Schülli T U, Pietsch U 2015 Nano Lett. 15 981Google Scholar
[24] Fontcuberta i Morral A, Colombo C, Abstreiter G, Arbiol J, Morante J R 2008 Appl. Phys. Lett. 92 063112Google Scholar
[25] Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E 2010 Nanotechnology 21 435601Google Scholar
[26] Ramsteiner M, Brandt O, Kusch P, Breuer S, Reich S, Geelhaar L 2013 Appl. Phys. Lett. 103 043121Google Scholar
[27] Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar
[28] Falcão B P, Leitão J P, Correia M R, Soares M R, Morales F M, Mánuel J M, Garcia R, Gustafsson A, Moreira M V B, de Oliveira A G, González J C 2013 J. Appl. Phys. 114 183508Google Scholar
[29] Rudolph D, Schweickert L, Morkötter S, Loitsch B, Hertenberger S, Becker J, Bichler M, Abstreiter G, Finley J J, Koblmüller G 2013 Appl. Phys. Lett. 105 033111
[30] Varshni Y P 1967 Physica 34 149Google Scholar
[31] Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar
[32] Jin S, Zheng Y, Li A 1997 J. Appl. Phys. 82 3870Google Scholar
[33] Fang X, Wei Z P, Chen R, Tang J L, Zhao H F, Zhang L G, Zhao D X, Fang D, Li J H, Fang F, Chu X Y, Wang X H 2015 ACS Appl. Mater. Inter. 7 10331Google Scholar
[34] Begum N, Piccin M, Jabeen F, Bais G, Rubini S, Martelli F, Bhatti A S 2008 J. Appl. Phys. 104 104311Google Scholar
[35] Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar
Catalog
Metrics
- Abstract views: 14194
- PDF Downloads: 176
- Cited By: 0