-
Electrochemical-mechanical coupling mechanism plays an important role in stress relaxation and cycle stability during charging and discharging of lithium ion batteries. The hollow core-shell structure has become a research hotspot in recent years due to the dual effects of its carbon layer and internal voids on volume expansion. However, the theory of diffusion induced stress has not been used to determine how the elastoplastic deformation of amorphous silicon affects the electrochemical performance of silicon anodes with more complex geometries. Based on the Cahn-Hilliard type of material diffusion and finite deformation, a fully coupled diffusion-deformation theory is developed to describe the electrochemical-mechanical coupling mechanism of silicon-polar particles. According to the interface reaction kinetics, the voltage response curve is obtained. The overall trend of the calculated results accords well with the experimental results, and the predicted stress response is also consistent with the experimental result, and thus verifying the effectiveness of the method. Taking the hollow carbon-coated silicon structure that has received much attention in recent years as an example, we study the electrochemical and mechanical behavior during lithiation of hollow carbon-coated silicon anodes and the capacity decay and stress evolution after charge and discharge cycles. The numerical simulation results show that the stress level of the hollow carbon-coated silicon electrode is significantly lower than that of the solid silicon electrode during the whole lithiation. With the lithiation, the stress difference becomes larger and the stress value at the end of lithiation is reduced by about 27%. It fully shows the dual effects of carbon layer and internal pores on stress relaxation and release. In addition, the concentration gradient in the solid silicon negative electrode is too large, which will result in greater stress. In contrast, the lithium ion concentration inside the hollow carbon-coated silicon particles during lithiation is significantly higher than that of the solid silicon particles, and tends to be evenly distributed, which conduces to alleviating the mechanical degradation of the electrode. At the same time, the hollow carbon coated silicon electrode reaches the fully lithiated state earlier, which fully shows the excellent electrochemical performance of the hollow core-shell structure. Finally, the numerical calculation shows that the capacity attenuation is quite consistent with the experimental measurements. Mitigation of stress levels under structural control delays the attenuation of the capacity of hollow carbon-coated silicon anodes. The excellent cycle stability can be attributed to the dual effect of carbon coating and internal pores on volume expansion and stress relief.
-
Keywords:
- electrochemical-mechanical coupling /
- hollow carbon coated silicon particles /
- finite element numerical method /
- cyclic stability
[1] 程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202Google Scholar
Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar
[2] 蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar
Jiang Y H, Ai L, Jia M, Cheng Y, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar
[3] 张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14
Zhang J Q, Lü B, Song Y C 2017 Chin. Quart. Mech. 38 14
[4] DeLuca C M, Maute K, Dunn M L 2011 J. Power Sources 196 9672Google Scholar
[5] Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, Cui Y 2014 Nat. Nanotechnol. 9 187Google Scholar
[6] Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 16071Google Scholar
[7] Jia Z, Li T 2015 J. Power Sources 275 866Google Scholar
[8] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar
[9] Hu B, Ma Z S, Lei W, Zou Y, Lu C 2017 Theor. Appl. Mech. Lett. 7 199Google Scholar
[10] Ma Z S, Xie Z C, Wang Y, Zhang P P, Pan Y, Zhou Y C, Lu C 2015 J. Power Sources 290 114Google Scholar
[11] Zhang X Y, Song W L, Liu Z L, Chen H S, Li T, Wei Y J, Fang D N 2017 J. Mater. Chem. A 51 2793
[12] Cho J 2010 J. Mater. Chem. 20 4009Google Scholar
[13] Luo F, Liu B, Zheng J, Chu G, Zhong K, Li H, Huang X, Chen L 2015 J. Electrochem. Soc. 162 A2509Google Scholar
[14] Terranova M L, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M 2014 J. Power Sources 246 167Google Scholar
[15] Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595Google Scholar
[16] Su L W, Zhou Z, Ren M M 2010 Chem. Commun. 46 2590Google Scholar
[17] Hwa Y, Kim W S, Hong S H, Sohn H J 2012 Electrochim. Acta 71 201Google Scholar
[18] Yan D, Bai Y, Yu C, Li X, Zhang W 2014 J. Alloys Compd. 609 86Google Scholar
[19] Xu Y, Zhu Y, Wang C 2014 J. Mater. Chem. A 2 9751Google Scholar
[20] Shao D, Tang D, Mai Y, Zhang L 2013 J. Mater. Chem. A 1 15068Google Scholar
[21] Ma X, Liu M, Gan L, Tripathi P K, Zhao Y, Zhu D, Xu Z, Chen L 2014 Phys. Chem. Chem. Phys. 16 4135Google Scholar
[22] Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y 2012 Nano Lett. 12 3315Google Scholar
[23] Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki M S, Shamie J S, Shaw L L 2016 Electrochim. Acta 215 126Google Scholar
[24] Ashuri M, He Q, Zhang K, Emani S, Shaw L L 2016 J. Sol-Gel. Sci. Technol. 82 201Google Scholar
[25] Guo Z, Ji L, Chen L 2017 J. Mater. Sci. 52 13606Google Scholar
[26] Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220Google Scholar
[27] Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307Google Scholar
[28] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会 2018 物理学报 67 140201Google Scholar
Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys. Sin. 67 140201Google Scholar
[29] Zhao Y, Stein P, Xu B X 2015 Comput. Meth. Appl. Mech. Eng. 297 325Google Scholar
[30] Anand L 2012 J. Mech. Phys. Solids 60 1983Google Scholar
[31] Sethuraman V A, Chon M J, Shimshak M, van Winkle N, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar
[32] Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar
[33] Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H, Lieberwirth I 2009 Solid State Ionics 180 222Google Scholar
[34] Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569Google Scholar
[35] Bucci G, Nadimpalli S P V, Sethuraman V A, Bower A F, Guduru P R 2014 J. Mech. Phys. Solids 62 276Google Scholar
-
图 2 中空碳包覆硅结构的建模 (a) Ashuri等[24]实验制备的中空碳包覆硅颗粒TEM图像; (b)中空核-壳结构有限元模型示意图; (c)中空核-壳结构有限元网格划分示意图
Figure 2. Modeling of hollow carbon coated silicon structure: (a) TEM image of hollow carbon coated silicon particles reproduced by Ashuri et al.[24]; (b) finite element model of hollow core-shell structure; (c) schematic diagram of finite element meshing of hollow core-shell structure.
表 1 材料参数
Table 1. Material parameters.
-
[1] 程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202Google Scholar
Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar
[2] 蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar
Jiang Y H, Ai L, Jia M, Cheng Y, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar
[3] 张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14
Zhang J Q, Lü B, Song Y C 2017 Chin. Quart. Mech. 38 14
[4] DeLuca C M, Maute K, Dunn M L 2011 J. Power Sources 196 9672Google Scholar
[5] Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, Cui Y 2014 Nat. Nanotechnol. 9 187Google Scholar
[6] Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 16071Google Scholar
[7] Jia Z, Li T 2015 J. Power Sources 275 866Google Scholar
[8] Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar
[9] Hu B, Ma Z S, Lei W, Zou Y, Lu C 2017 Theor. Appl. Mech. Lett. 7 199Google Scholar
[10] Ma Z S, Xie Z C, Wang Y, Zhang P P, Pan Y, Zhou Y C, Lu C 2015 J. Power Sources 290 114Google Scholar
[11] Zhang X Y, Song W L, Liu Z L, Chen H S, Li T, Wei Y J, Fang D N 2017 J. Mater. Chem. A 51 2793
[12] Cho J 2010 J. Mater. Chem. 20 4009Google Scholar
[13] Luo F, Liu B, Zheng J, Chu G, Zhong K, Li H, Huang X, Chen L 2015 J. Electrochem. Soc. 162 A2509Google Scholar
[14] Terranova M L, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M 2014 J. Power Sources 246 167Google Scholar
[15] Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595Google Scholar
[16] Su L W, Zhou Z, Ren M M 2010 Chem. Commun. 46 2590Google Scholar
[17] Hwa Y, Kim W S, Hong S H, Sohn H J 2012 Electrochim. Acta 71 201Google Scholar
[18] Yan D, Bai Y, Yu C, Li X, Zhang W 2014 J. Alloys Compd. 609 86Google Scholar
[19] Xu Y, Zhu Y, Wang C 2014 J. Mater. Chem. A 2 9751Google Scholar
[20] Shao D, Tang D, Mai Y, Zhang L 2013 J. Mater. Chem. A 1 15068Google Scholar
[21] Ma X, Liu M, Gan L, Tripathi P K, Zhao Y, Zhu D, Xu Z, Chen L 2014 Phys. Chem. Chem. Phys. 16 4135Google Scholar
[22] Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y 2012 Nano Lett. 12 3315Google Scholar
[23] Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki M S, Shamie J S, Shaw L L 2016 Electrochim. Acta 215 126Google Scholar
[24] Ashuri M, He Q, Zhang K, Emani S, Shaw L L 2016 J. Sol-Gel. Sci. Technol. 82 201Google Scholar
[25] Guo Z, Ji L, Chen L 2017 J. Mater. Sci. 52 13606Google Scholar
[26] Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220Google Scholar
[27] Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307Google Scholar
[28] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会 2018 物理学报 67 140201Google Scholar
Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys. Sin. 67 140201Google Scholar
[29] Zhao Y, Stein P, Xu B X 2015 Comput. Meth. Appl. Mech. Eng. 297 325Google Scholar
[30] Anand L 2012 J. Mech. Phys. Solids 60 1983Google Scholar
[31] Sethuraman V A, Chon M J, Shimshak M, van Winkle N, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar
[32] Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar
[33] Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H, Lieberwirth I 2009 Solid State Ionics 180 222Google Scholar
[34] Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569Google Scholar
[35] Bucci G, Nadimpalli S P V, Sethuraman V A, Bower A F, Guduru P R 2014 J. Mech. Phys. Solids 62 276Google Scholar
Catalog
Metrics
- Abstract views: 10032
- PDF Downloads: 215
- Cited By: 0