Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

I-V characteristics and voltage dependence of pH-sensitive organic electrochemical transistors

Li Shi-Jia Wang Zhen-Xing Niu Yan Wang Bin Sang Sheng-Bo Zhang Wen-Dong Gao Yang Ji Jian-Long

Citation:

I-V characteristics and voltage dependence of pH-sensitive organic electrochemical transistors

Li Shi-Jia, Wang Zhen-Xing, Niu Yan, Wang Bin, Sang Sheng-Bo, Zhang Wen-Dong, Gao Yang, Ji Jian-Long
PDF
HTML
Get Citation
  • The pH-sensitive organic electrochemical transistors are expected to be widely used in wearable electronic devices for in-situ physiological monitoring. However, the unclear current-voltage relationship seriously hinders it from developing in design, optimization, and application. In the present work, the current-voltage characteristic of pH-sensitive organic electrochemical transistor is investigated by combining the electrochemical equilibrium equation with the series model of differential capacitances formed at gate electrode/electrolyte and semiconductor channel/electrolyte interface. Moreover, a pH-sensitive organic electrochemical transistor is constructed by using poly (3,4-ethylenedioxythiophene)/polystyrene sulfonate as the semiconductor layer material and modifying the gate electrode with pH-sensitive polymer (poly (3,4-ethylenedioxythiophene)/bromothymol blue). The effectiveness of the theoretical model is verified by investigating the output, transfer, and pH response characteristics of the pH-sensitive organic electrochemical transistor. The experimental results show that the detection sensitivity can reach up to 0.22 mA·pH·unit–1, and the pH response is gate-bias dependent. Then, a polynomial indicating the gate bias effect is introduced to modify the current-voltage characteristic equation. The goodness of fitting the theoretical model to the experimental results of transfer curves is found to be 0.998. The comparison between experimental and theoretical results of the gate bias corresponding to the peak transconductance and pH sensitivity responding to gate bias can also verify the effectiveness of the modified theoretical model. The results can provide theoretical support for the design and manufacture of pH-sensitive organic electrochemical transistors based flexible biosensors.
      Corresponding author: Ji Jian-Long, jianlongji@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52175542), the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302123136), the Natural Science Foundation Project of Chongqing, China (Grant No. cstc2020jcyj-msxmX0002), and the China Postdoctoral Science Foundation (Grant No. 2020M673646).
    [1]

    Rivnay J, Inal S, Salleo A, Owens R M, Berggren M, Malliaras G G 2018 Nat. Rev. Mater. 3 1Google Scholar

    [2]

    Donahue M J, Williamson A, Strakosas X, Friedlein J T, McLeod R R, Gleskova H, Malliaras G G 2018 Adv. Mater. 30 1705031Google Scholar

    [3]

    Liang Y, Wu C, Figueroa-Miranda G, Offenhaeusser A, Mayer D 2019 Biosens. Bioelectron. 144 111668Google Scholar

    [4]

    Guo K, Wustoni S, Koklu A, Díaz-Galicia E, Moser M, Hama A, Alqahtani A A, Ahmad A N, Alhamlan F S, Shuaib M, Pain A, McCulloch I, Arold S T, Grünberg R, Inal S 2021 Nat. Biomed. Eng. 5 666Google Scholar

    [5]

    White K A, Grillo-Hill B K, Barber D L 2017 J. Cell Sci. 130 663Google Scholar

    [6]

    Mariani F, Gualandi I, Tessarolo M, Fraboni B, Scavetta E 2018 Nat. Rev. Mater. 10 22474

    [7]

    Scheiblin G, Coppard R, Owens R M, Mailley P, Malliaras G G 2017 Adv. Mater. Technol. 2 1600141Google Scholar

    [8]

    Demuru S, Kunnel B P, Briand D 2020 Adv. Mater. Technol. 5 2000328Google Scholar

    [9]

    Demuru S, Kunnel B P, Briand D 2021 Biosens. Bioelectron. X 7 100065

    [10]

    Mariani F, Gualandi I, Tonelli D, Decataldo F, Possanzini L, Fraboni B, Scavetta E 2020 Electrochem. Commun. 116 106763Google Scholar

    [11]

    Bernards D A, Malliaras G G 2007 Adv. Funct. Mater. 17 3538Google Scholar

    [12]

    Ji J L, Li M M, Chen Z W, Wang H W, Jiang X N, Zhuo K, Liu Y, Yang X, Gu Z, Sang S B, Shu Y 2019 Nano Res. 12 1943Google Scholar

    [13]

    Moser M, Hidalgo T C, Surgailis J, Gladisch J, Ghosh S, Sheelamanthula R, Thiburce Q, Giovannitti A, Salleo A, Gasparini N, Wadsworth A, Zozoulenko I, Berggren M, Stavrinidou E, Inal S, McCulloch I 2020 Adv. Mater. 32 2002748Google Scholar

    [14]

    Wu X, Surendran A, Ko J, Filonik O, Herzig E M, Müller-Buschbaum P, Leong W L 2019 Adv. Mater. 31 1805544Google Scholar

    [15]

    Bidinger S L, Han S, Malliaras G G, Hasan T 2022 Appl. Phys. Lett. 120 073302Google Scholar

    [16]

    He Y, Kukhta N A, Marks A, Luscombe C K 2022 J. Mater. Chem. C 10 2314Google Scholar

    [17]

    Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D 2013 Adv. Mater. 25 1822Google Scholar

    [18]

    Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar

    [19]

    Rivnay J, Leleux P, Sessolo M, Khodagholy D, Hervé T, Fiocchi M, Malliaras G G 2013 Adv. Mater. 25 7010Google Scholar

  • 图 1  有机电化学晶体管(OECT) (a)结构制备示意图, 其中S, D, G分别表示OECT的源极、漏极与栅极; (b)OECT半导体沟道的原子力显微镜测试图; (c)修饰有PEDOT:BTB膜的OECT栅极激光共聚焦扫描显微镜测试图

    Figure 1.  The organic electrochemical transistors (OECTs): (a) Schematic of structure preparation, S, D, and G represents the source, drain, and gate, respectively; (b) the atomic force microscope image of the semiconductor channel; (c) the laser confocal scanning microscope image of the gate electrode modified with PEDOT:BTB films.

    图 2  pH敏感的OECT (a)结构示意图; (b)电路模型示意图

    Figure 2.  pH-sensitive OECTs: (a) Structure schematic; (b) schematic of the circuit model.

    图 3  使用 (a) 5次、(b) 10次、(c) 20次循环伏安法(CV)电沉积制备PEDOT:BTB膜, 并以此修饰栅极获得的晶体管输出曲线与(d)转移曲线, 其中绿色、红色、蓝色转移曲线分别对应于图(a)、图(b)与图(c)

    Figure 3.  Output curves of OECTs, PEDOT:BTB film modifying the gate electrode is obtained by (a) 5 cycles, (b) 10 cycles, and (c) 20 cycles of CV electrodepositions; (d) transfer curves of OECTs, in which the green, red, and blue curves correspond to (a), (b) and (c), respectively.

    图 4  栅极/电解质界面电容(CG)与CV次数关系 (a)电化学阻抗谱(Electrochemical impedance spectroscopy, EIS)波特图; (b)由EIS获得的CG等效电容(Ceff), 插图用10–1 Hz处Ceff表示CG, 其值随CV次数增大而增大. 绿色, 红色、蓝色曲线分别表示5, 10, 20次CV循环的测试结果

    Figure 4.  Relationship between gate/electrolyte interface capacitance (CG) and CV times: (a) The Bode electrochemical impedance spectroscopy (EIS); (b) the equivalent capacitance of CG (Ceff). The inset shows that CG, indicated by Ceff at 10–1 Hz, increases with CV cycles. The green, red and blue curves represent the experimental results using 5, 10, and 20 CV cycles.

    图 5  晶体管pH响应与CG的关系 (a)ΔiDS是基于pH = 2的源漏极瞬态电流(iDS)归一化的pH响应; (b)ΔiDS/ΔpH随着CG的增大而增大. 图中绿色, 红色、蓝色数据分别表示采用5, 10, 20次CV循环的测试结果

    Figure 5.  The relationship between the pH sensitivity and CV cycle numbers: (a) ΔiDS represents the pH response normalized by the source-drain transient current (iDS) obtained at pH = 2; (b) ΔiDS/ΔpH increases with the CG increment. The green, red and blue data represent the experimental results using 5, 10, and 20 CV cycles, respectively.

    图 6  OECT对于pH值的响应 (a)不同VG条件下OECT瞬态响应电流iDS对于pH的响应, ΔiDS由任意pH条件下的iDS与pH = 2的值归一化所得; (b)不同pH条件下晶体管的转移曲线; (c)不同pH条件下晶体管的跨导曲线; (d)不同VG条件下OECT稳态响应电流IDS对于pH的响应, ΔIDS由任意pH条件下的IDS与pH = 2时的值归一化所得

    Figure 6.  The response of OECT to the ambient pH: (a) the effect of VG on OECTs transient response (iDS), ΔiDS is obtained by normalizing iDS under specific pH level and the value at pH = 2; (b) OECTs transfer curves under different pH levels; (c) OECTs transconductance curves under different pH levels; (d) the effect of VG on OECTs steady-state response (IDS), ΔIDS is obtained by normalizing IDS under specific pH level and the value at pH = 2.

    图 7  实验结果与拟合数据比较 (a) OECT转移曲线; (b)由拟合转移曲线获得的跨导曲线; (c)不同pH条件下的峰值跨导对应的栅极电压, 蓝色与红色分别代表实验与拟合结果; (d) VG对于晶体管pH响应的影响, 蓝色与红色分别代表实验与拟合结果

    Figure 7.  Comparisons of experimental and fitting results: (a) Transfer curves; (b) transconductance curves derived by the fitting transfer curves; (c) the gate bias corresponding to the peak transconductance under different pH levels; (d) the effect of VG on the pH response of transistors. The blue and red data in (c) and (d) represent the experimental and fitting results, respectively.

    表 1  不同pH敏感OECT的性能对比

    Table 1.  Performance comparison of pH sensitive OECTs

    文献敏感材料灵敏度
    (μA.pH1)
    归一化灵
    敏度 (pH1)
    检测范围
    [7]聚苯胺5.255—6.7
    [9]聚苯胺164—10
    [7]氧化铱9.55—7.3
    [8]氢离子
    选择性膜
    114—7
    [6]PEDOT:BTB14.82.3—9.2
    本文PEDOT:BTB2202—9
    DownLoad: CSV
  • [1]

    Rivnay J, Inal S, Salleo A, Owens R M, Berggren M, Malliaras G G 2018 Nat. Rev. Mater. 3 1Google Scholar

    [2]

    Donahue M J, Williamson A, Strakosas X, Friedlein J T, McLeod R R, Gleskova H, Malliaras G G 2018 Adv. Mater. 30 1705031Google Scholar

    [3]

    Liang Y, Wu C, Figueroa-Miranda G, Offenhaeusser A, Mayer D 2019 Biosens. Bioelectron. 144 111668Google Scholar

    [4]

    Guo K, Wustoni S, Koklu A, Díaz-Galicia E, Moser M, Hama A, Alqahtani A A, Ahmad A N, Alhamlan F S, Shuaib M, Pain A, McCulloch I, Arold S T, Grünberg R, Inal S 2021 Nat. Biomed. Eng. 5 666Google Scholar

    [5]

    White K A, Grillo-Hill B K, Barber D L 2017 J. Cell Sci. 130 663Google Scholar

    [6]

    Mariani F, Gualandi I, Tessarolo M, Fraboni B, Scavetta E 2018 Nat. Rev. Mater. 10 22474

    [7]

    Scheiblin G, Coppard R, Owens R M, Mailley P, Malliaras G G 2017 Adv. Mater. Technol. 2 1600141Google Scholar

    [8]

    Demuru S, Kunnel B P, Briand D 2020 Adv. Mater. Technol. 5 2000328Google Scholar

    [9]

    Demuru S, Kunnel B P, Briand D 2021 Biosens. Bioelectron. X 7 100065

    [10]

    Mariani F, Gualandi I, Tonelli D, Decataldo F, Possanzini L, Fraboni B, Scavetta E 2020 Electrochem. Commun. 116 106763Google Scholar

    [11]

    Bernards D A, Malliaras G G 2007 Adv. Funct. Mater. 17 3538Google Scholar

    [12]

    Ji J L, Li M M, Chen Z W, Wang H W, Jiang X N, Zhuo K, Liu Y, Yang X, Gu Z, Sang S B, Shu Y 2019 Nano Res. 12 1943Google Scholar

    [13]

    Moser M, Hidalgo T C, Surgailis J, Gladisch J, Ghosh S, Sheelamanthula R, Thiburce Q, Giovannitti A, Salleo A, Gasparini N, Wadsworth A, Zozoulenko I, Berggren M, Stavrinidou E, Inal S, McCulloch I 2020 Adv. Mater. 32 2002748Google Scholar

    [14]

    Wu X, Surendran A, Ko J, Filonik O, Herzig E M, Müller-Buschbaum P, Leong W L 2019 Adv. Mater. 31 1805544Google Scholar

    [15]

    Bidinger S L, Han S, Malliaras G G, Hasan T 2022 Appl. Phys. Lett. 120 073302Google Scholar

    [16]

    He Y, Kukhta N A, Marks A, Luscombe C K 2022 J. Mater. Chem. C 10 2314Google Scholar

    [17]

    Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D 2013 Adv. Mater. 25 1822Google Scholar

    [18]

    Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar

    [19]

    Rivnay J, Leleux P, Sessolo M, Khodagholy D, Hervé T, Fiocchi M, Malliaras G G 2013 Adv. Mater. 25 7010Google Scholar

  • [1] Li Yan, Ma Xiang-Chao, Huang Xi. Electrochemical Pourbaix diagrams of monolayer MoSSe with different atomic ratios of chalcogens. Acta Physica Sinica, 2023, 72(4): 046401. doi: 10.7498/aps.72.20221567
    [2] Li Xiao-Jie, Yu Yun-Tai, Zhang Zhi-Wen, Dong Xiao-Rui. External characteristics of lithium-ion power battery based on electrochemical aging decay model. Acta Physica Sinica, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [3] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [4] Deng Xiao-Qing, Deng Lian-Wen, He Yi-Ni, Liao Cong-Wei, Huang Sheng-Xiang, Luo Heng. Leakage current model of InGaZnO thin film transistor. Acta Physica Sinica, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [5] Liu Zheng-Yu, Yang Kun, Wei Zi-Hong, Yao Li-Yang. Electrochemical model of lithium ion battery with simplified liquid phase diffusion equation. Acta Physica Sinica, 2019, 68(9): 098801. doi: 10.7498/aps.68.20190159
    [6] Niu Lu, Wang Lu-Xia. Effect of external field on the I-V characteristics through the molecular nano-junction. Acta Physica Sinica, 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [7] Yang Dan, Zhang Li, Yang Sheng-Yi, Zou Bing-Suo. Low-voltage pentacene photodetector based on a vertical transistor configuration. Acta Physica Sinica, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [8] Shi Lei, Feng Shi-Wei, Shi Bang-Bing, Yan Xin, Zhang Ya-Min. Degradation induced by voltage and current for AlGaN/GaN high-electron mobility transistor under on-state stress. Acta Physica Sinica, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [9] Chen Hai-Feng. Characteristics of gate-modulated generation current under the reverse substrate bias in nano-nMOSFET. Acta Physica Sinica, 2013, 62(18): 188503. doi: 10.7498/aps.62.188503
    [10] Dong Jing, Chai Yu-Hua, Zhao Yue-Zhi, Shi Wei-Wei, Guo Yu-Xiu, Yi Ming-Dong, Xie Ling-Hai, Huang Wei. The progress of flexible organic field-effect transistors. Acta Physica Sinica, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [11] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [12] Xi Shan-Bin, Lu Wu, Wang Zhi-Kuan, Ren Di-Yuan, Zhou Dong, Wen Lin, Sun Jing. Use the subthreshold-current technique to separate radiation induced defects in gate controlled lateral pnp bipolar transistors. Acta Physica Sinica, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [13] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [14] Nie Guo-Zheng, Peng Jun-Biao, Zhou Ren-Long. Organic field-effect transistor with low-cost CuI/Al bilayer electrode. Acta Physica Sinica, 2011, 60(12): 127304. doi: 10.7498/aps.60.127304
    [15] Sun Qin-Jun, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Gao Li-Yan, Tian Xue-Yan, Wang Yong-Sheng. Contact effect in organic thin film transistors. Acta Physica Sinica, 2010, 59(11): 8125-8130. doi: 10.7498/aps.59.8125
    [16] Liu Yu-Rong, Chen Wei, Liao Rong. Low-operating-voltage polymer thin-film transistors based on poly(3-hexylthiophene). Acta Physica Sinica, 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [17] Yang Sheng-Yi, Du Wen-Shu, Qi Jie-Ru, Lou Zhi-Dong. Optoelectronic characteristics of NPB-based vertical organic light-emitting transistors. Acta Physica Sinica, 2009, 58(5): 3427-3432. doi: 10.7498/aps.58.3427
    [18] Yuan Guang-Cai, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Xu Na, Sun Qin-Jun, Xu Xu-Rong. Study of the characteristics of organic thin film transistors with phenyltrimethoxysilane buffer under low gate modulation voltage. Acta Physica Sinica, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [19] Yuan Guang-Cai, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Jiang Wei-Wei, Huang Jin-Zhao, Song Dan-Dan, Zhu Hai-Na, Huang Jin-Ying, Xu Xu-Rong. Study of the characteristics of organic thin film transistors based on different active layers of pentacene and CuPc thin films. Acta Physica Sinica, 2008, 57(9): 5911-5917. doi: 10.7498/aps.57.5911
    [20] Zhang Xiu-Long, Yang Sheng-Yi, Lou Zhi-Dong, Hou Yan-Bing. Dynamic electrical characteristics of organic light-emitting diodes. Acta Physica Sinica, 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
Metrics
  • Abstract views:  5632
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2022
  • Accepted Date:  18 March 2022
  • Available Online:  26 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回