Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical transport measurement system in pulsed high magnetic field based on rotation sample rod

Liu Qin-Ying Wang Jun-Feng Zuo Hua-Kun Yang Ming Han Xiao-Tao

Citation:

Electrical transport measurement system in pulsed high magnetic field based on rotation sample rod

Liu Qin-Ying, Wang Jun-Feng, Zuo Hua-Kun, Yang Ming, Han Xiao-Tao
PDF
HTML
Get Citation
  • In recent years, measuring the electrical transport properties of materials in different directions of applied magnetic field has become an important experimental study of topological quantum materials. With the development of condensed matter physics, scientific research has shown that under the ultra-high intensity pulsed magnetic field, the electrical transport study of materials may extend to the quantum limit region, and more abundant physical phenomena will be observed. However, in the existing electric transport measurement system, the rotation sample rod under the action of steady-state field presents a large size and significant eddy current effect, which makes it difficult to meet the requirements for pulsed field measurement, and the current commercial physical property measurement system (PPMS) can only operate under ±16 T steady magnetic field. In addition, the conventional rotation sample rod encounters the problems of insufficient angular resolution and space utilization when used in pulsed high magnetic environment. So there is an urgent need to develop a higher performance rotation measurement system. In view of the above background, in this paper we present a kind of electrical transport measurement system designed by Wuhan National High Magnetic Field Center (WHMFC), which consists of five modules: pulse power supply, pulse magnet, control center, cryogenic system, and signal measurement. The key component is the sample measuring rod with rotation function, which restricts the movement of the drawbar through a double-groove structure to achieve an angular change in a range from –5° to 185°. An angle calibration coil is mounted on the back of the sample stage. Based on the double-calibration method, the angle control accuracy of 0.1° is achieved. The temperature, magnetoresistance and Hall resistance signal are collected by the integrated circuit on sample stage and extracted by compensation circuit and virtual digital lock-in amplifier, and the accuracy of electric transport measurement is better than 0.1 mΩ. Furthermore, the effect of eddycurrent and material deformation at low temperatures are completely eliminated by using polyetheretherketone material, which effectively improves the stability and reliability of the rotation sample rod. Using this measuring rod, we complete a series of experiments in the 8 mm sample cavity in the center of the pulse magnet: the minimum ambient temperature reaches 1.3 K, the maximum magnetic field strength arrives at 65 T, and the direction angle of the magnetic field is able to change in a 190° range. Thus the universally applicable measurement system of electric transport experiment in pulsed high magnetic field is successfully established. In this paper, we elaborate the principle and device components of the measurement system, the design and fabrication of the angle measuring rod, and the calibration principle and measurement process. Relevant experimental results show that the system has important application value in the research of 3D Fermi surface, topological insulator surface state, quantum limit transport, superconductivity analysis, etc. Based on this system, the electrical transport experimental system at WHMFC provides an effective means for the relevant research teams (home and abroad) engaged in the exploration of the intrinsic physical characteristics of quantum materials in extremely pulsed high magnetic field and low temperature environment.
      Corresponding author: Zuo Hua-Kun, zuohuakun@163.com ; Han Xiao-Tao, xthan@mail.hust.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0401703)
    [1]

    Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai1 P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, Li L 2014 Science 346 1208Google Scholar

    [2]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Wen H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023Google Scholar

    [3]

    Wang Y J, Yu J H, Wang Y Q, Xi C Y, Ling L S, Zhang S L, Wang J R, Xiong Y M, Han T, Han H, Yang J, Gong J X, Luo L, Tong W, Zhang L, Qu Z, Han Y Y, Zhu W K, Pi L, Wan X G, Zhang C J, Zhang Y H 2018 Phys. Rev. B 97 115133Google Scholar

    [4]

    Ramshaw B J, Vignolle B, Day J, Liang R X, Hardy W N, Proust C, Bonn D A 2011 Nature Phys. 7 234Google Scholar

    [5]

    Sebastian S E, Harrison N, Altarawneh M M, Liang R X, Bonn D A, Hardy W N, Lonzarich G 2011 Nat. Commun. 2 471Google Scholar

    [6]

    Murphy J, Tanatar M A, Graf D, Brooks J S, Bud’ko S L, Canfield P C, Kogan V G, Prozorov R 2013 Phys. Rev. B 87 094505Google Scholar

    [7]

    Qu D X, Hor Y S, Xiong J, Cava R J 2010 Science 329 821Google Scholar

    [8]

    Quantun Design PPMS Specification https://www.qdusa.Com/sitedocs/productBrochures/1070-002.pdf [2019-7-12]

    [9]

    Doan N N, James M, Chuck H M 2016 IEEE Trans. Appl. Supercond. 26 4300905Google Scholar

    [10]

    Fritz H, Miura N 2003 Magnetic Fields Science and Technology (Vol. 1) (New Jersey: World Scientific Publishing) pp285−316

    [11]

    Han X T, Peng T, Ding H F, Ding T H, Zhu Z W, Xia Z C, Wang J F, Han J B, Ouyang Z W, Han Y B, Xiao H X, Cao Q L, Lü Y L, Pan Y, Li L 2017 Matter and Radiation at Extremes 2 278Google Scholar

    [12]

    王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波 2012 物理学报 61 107601Google Scholar

    Wang S L, Li L, Ouyang Z W, Xia Z C, Xia N M, Peng T, Zhang K B 2012 Acta Phys. Sin. 61 107601Google Scholar

    [13]

    Li L, Lü Y L, Xiao H X, Pan Y, Peng T 2016 IEEE Trans. Appl. Supercond. 26 4303204Google Scholar

    [14]

    刘永杰, 林梓泉, 王俊峰 2016 物理 45 19Google Scholar

    Liu Y J, Lin Z Q, Wang J F 2016 Physics 45 19Google Scholar

    [15]

    Cheng K Q, Wang L, Xu Y J, Yang F, Zhu H P, Ke J Z, Lu X F, Xia Z C, Wang J F, Shi Y G, Yang Y F, Luo Y K 2019 Phys. Rev. Mater. 3 021402(R)Google Scholar

    [16]

    Wang H C, Liu H W, Li Y N, Liu Y J, Wang J F, Liu J, Dai J Y, Wang Y, Li L, Yan J Q, Mandrus D, Xie X C, Wang J 2018 Sci. Adv. 4 5096Google Scholar

    [17]

    Zhao L X, Xu L C, Zuo H K, Wu X M, Gao G Y, Zhu Z W 2018 Phys. Rev. B 98 085137Google Scholar

    [18]

    Shi J T, Han X T, Xie J F, Li L 2016 IEEE Trans. Appl. Supercond. 26 4300604Google Scholar

    [19]

    Zuo H K, Xia Z C, Li L 2014 CN Patent for Utility Model 203704948 U

    [20]

    Coldea A I, Andrew C M J, Analytis J G, McDonald R D, Bangure A F, Chu J H, Fisher I R, Canrrinton A 2009 Phys. Rev. Lett. 103 026404Google Scholar

    [21]

    Torque Magnetometry in Pulsed Fields, National High Magnetic Field Laboratory https://nationalmaglab.Org/user-facilities/pulsed-field-facility/pff-measurement-techniques/torque-magnetometry-pff [2019-7-12]

    [22]

    Wang K F, Graf D, Lei H C, Tozer S W, Petrovic C 2011 Phys. Rev. B 84 220401Google Scholar

    [23]

    Wang K F, Graf D, Wang L M, Lei H C, Tozer S W, Petrovic C 2012 Phys. Rev. B 85 041101Google Scholar

    [24]

    Liu Q Y, Zhang S Z, Ding L C, Zuo H K, Han X T 2019 IEEE International Instrumentation and Measurement Technology Conference Proceedings Auckland, New Zealand, May 20–23, 2019 p504

    [25]

    Zhao Y F, Liu H W, Zhang C L, Wang H C, Wang J F, Lin Z Q, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z L, Jia S, Xie X C, Wang J 2015 Phys. Rev. X 5 031037Google Scholar

    [26]

    Gotze K, Klotz J, Gnida D, Harima H, Aoki D, Demuer A, Elgazzar S, Wosnitza J, Kaxzorowski D, Sheikin I 2015 Phys. Rev. B 92 115141Google Scholar

    [27]

    Arnold F, Shekhar C, Wu S C, Sun Y, Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B H 2016 Nat. Commun. 7 11615Google Scholar

    [28]

    Zhang C L, Schindler F, Liu H W, Chang T R, Xu S Y, Chang G Q, Hua W, Jiang H, Yuan Z J, Sun J L, Jeng H T, Lu H Z, Lin H, Hasan M Z, Xie X C, Nerpert T, Jia S 2017 Phys. Rev. B 96 165148Google Scholar

    [29]

    Kim H, Wang K F, Nakajima Y, Hu R W, Ziemak S, Syers P, Wang L M, Hodovanets H, Denlinger J D, Brydon P M, Agterberg D F, Tanatar M A, Prozorov R, Paglione J 2018 Sci. Adv. 4 4513Google Scholar

    [30]

    Zhu Z W, Lin X, Liu J, Fauque B, Tao Q, Yang C L, Shi Y G, Behnia K 2015 Phys. Rev. Lett. 114 176601Google Scholar

    [31]

    Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S, Fisher L R 2010 Nature Phys. 6 960Google Scholar

    [32]

    Petrushevsky M, Lahoud E, Ron A, Maniv E, Diamant I, Neder I, Wiedmann S, Guduru V K, Chiappini F, Zeitler U, Maan J C, Chashka K, Kanigel A, Dagan Y 2012 Phys. Rev. B 86 045131Google Scholar

    [33]

    Zhang C L, Xu S Y, Wang C M, Lin Z Q, Du Z Z, Guo C, Lee C C, Lu H, Feng Y Y, Huang S M, Chang G Q, Hsu C H, Liu H W, Li L, Zhang C, Zhang J L, Xie X C, Neupert T, Hasan M Z, Lu H Z, Wang J F, Jia S 2017 Nature Phys. 13 979Google Scholar

    [34]

    Fauque B, Yang H, Sheikin I, Balicas L, Issi J P, Behnia K 2009 Phys. Rev. B 79 245124Google Scholar

    [35]

    Fauque B, Vignolle B, Proust C, Issi J P, Behnia K 2009 New J. Phys. 11 113012Google Scholar

    [36]

    Zuo H K, Bao J K, Liu Y, Wang J H, Jin Z, Xia Z C, Li L, Xu Z, Kang J, Zhu Z W, Cao G H 2017 Phys. Rev. B 95 014502Google Scholar

  • 图 1  脉冲强磁场电输运测量系统

    Figure 1.  Electrical transport measurement system in pulsed high magnetic field.

    图 2  国内外已有转角样品杆 (a) 稳态强磁场中使用的探测样品杆; (b) 美国国家脉冲强磁场中心样品杆

    Figure 2.  Rotation sample rod in: (a) Steady-state strong magnetic field; (b) NHMFL (National High Magnetic Field Laboratory).

    图 3  武汉强磁场中心转角样品杆 (a)机械结构图; (b) 转角示意图; (c) 角度标定原理图

    Figure 3.  Rotation sample rod in WHMFC (Wuhan National High Magnetic Field Center): (a) Mechanical structure diagram; (b) situation at different angles; (c) principle of angle calibration.

    图 4  转角样品测量杆实物图 (a) 杆件顶部旋钮及引线罗盘; (b) 底部样品台正面; (c) 底部样品台背面

    Figure 4.  Physical diagram rotation sample rod: (a) Top part; (b) the front of the bottom sample stage; (c) the back of the bottom sample stage.

    图 5  60 T脉冲强磁场下转角电输运实验相关数据处理过程

    Figure 5.  Signal processing of angular-dependent electrical transport experiment in 60 T pulsed high magnetic field.

    图 6  Cd3As2三维嵌套各向异性费米面构造图 (a) 不同晶轴方向的费米面最大横截面; (b) B[112]方向上的量子振荡

    Figure 6.  3D nested anisotropic Fermi surface construction of Cd3As2: (a) Largest cross section of Fermi surface versus the magnetic field orientation; (b) quantum oscillation for B[112] direction.

    图 7  拓扑绝缘体Bi2Se3二维表面态特征 (a) 量子振荡现象[31]; (b) 振荡频率随转角的变化曲线[32]

    Figure 7.  2D surface state of a topological insulator Bi2Se3: (a) Quantum oscillation[31]; (b) frequency of the oscillations as a function of θ [32].

    图 8  脉冲强磁场下的半金属材料量子极限输运研究 (a) TaP; (b) Bi

    Figure 8.  Quantum limit electrical transport of semi-metal materials in pulsed high magnetic fields: (a) TaP; (b) Bi.

    图 9  超导材料K2Cr3As3的转角电输运实验结果 (a) π/2处出现上方临界场(Hc2)的最大值表明了泡利极限的缺失; (b) 极坐标图则体现了Hc2的三重调制性

    Figure 9.  Electrical transport of the superconducting material K2Cr3As3: (a) The maximum value of the upper critical field (Hc2) at π/2 indicates the absence the Pauli paramagnetic effect; (b) the polar map of Hc2 shows a unique three fold modulation.

    表 1  不同样品杆技术参数比较

    Table 1.  Technical parameters of different kind of measurement rod.

    样品杆类型及参数角度范围θ/(°)角度分辨率θ/(°)磁场范围B/T适应孔径d/mm样品台空间
    PPMS商用样品杆–10—3700.05 ± 16 (稳态)25相对孔径较大
    传统拉绳式样品杆0—1801.00 > 60 (脉冲)9相对孔径较小
    新型拉杆式样品杆–5—1850.10 > 60 (脉冲)8相对孔径较大
    DownLoad: CSV
  • [1]

    Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai1 P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z, Li L 2014 Science 346 1208Google Scholar

    [2]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Wen H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023Google Scholar

    [3]

    Wang Y J, Yu J H, Wang Y Q, Xi C Y, Ling L S, Zhang S L, Wang J R, Xiong Y M, Han T, Han H, Yang J, Gong J X, Luo L, Tong W, Zhang L, Qu Z, Han Y Y, Zhu W K, Pi L, Wan X G, Zhang C J, Zhang Y H 2018 Phys. Rev. B 97 115133Google Scholar

    [4]

    Ramshaw B J, Vignolle B, Day J, Liang R X, Hardy W N, Proust C, Bonn D A 2011 Nature Phys. 7 234Google Scholar

    [5]

    Sebastian S E, Harrison N, Altarawneh M M, Liang R X, Bonn D A, Hardy W N, Lonzarich G 2011 Nat. Commun. 2 471Google Scholar

    [6]

    Murphy J, Tanatar M A, Graf D, Brooks J S, Bud’ko S L, Canfield P C, Kogan V G, Prozorov R 2013 Phys. Rev. B 87 094505Google Scholar

    [7]

    Qu D X, Hor Y S, Xiong J, Cava R J 2010 Science 329 821Google Scholar

    [8]

    Quantun Design PPMS Specification https://www.qdusa.Com/sitedocs/productBrochures/1070-002.pdf [2019-7-12]

    [9]

    Doan N N, James M, Chuck H M 2016 IEEE Trans. Appl. Supercond. 26 4300905Google Scholar

    [10]

    Fritz H, Miura N 2003 Magnetic Fields Science and Technology (Vol. 1) (New Jersey: World Scientific Publishing) pp285−316

    [11]

    Han X T, Peng T, Ding H F, Ding T H, Zhu Z W, Xia Z C, Wang J F, Han J B, Ouyang Z W, Han Y B, Xiao H X, Cao Q L, Lü Y L, Pan Y, Li L 2017 Matter and Radiation at Extremes 2 278Google Scholar

    [12]

    王绍良, 李亮, 欧阳钟文, 夏正才, 夏念明, 彭涛, 张凯波 2012 物理学报 61 107601Google Scholar

    Wang S L, Li L, Ouyang Z W, Xia Z C, Xia N M, Peng T, Zhang K B 2012 Acta Phys. Sin. 61 107601Google Scholar

    [13]

    Li L, Lü Y L, Xiao H X, Pan Y, Peng T 2016 IEEE Trans. Appl. Supercond. 26 4303204Google Scholar

    [14]

    刘永杰, 林梓泉, 王俊峰 2016 物理 45 19Google Scholar

    Liu Y J, Lin Z Q, Wang J F 2016 Physics 45 19Google Scholar

    [15]

    Cheng K Q, Wang L, Xu Y J, Yang F, Zhu H P, Ke J Z, Lu X F, Xia Z C, Wang J F, Shi Y G, Yang Y F, Luo Y K 2019 Phys. Rev. Mater. 3 021402(R)Google Scholar

    [16]

    Wang H C, Liu H W, Li Y N, Liu Y J, Wang J F, Liu J, Dai J Y, Wang Y, Li L, Yan J Q, Mandrus D, Xie X C, Wang J 2018 Sci. Adv. 4 5096Google Scholar

    [17]

    Zhao L X, Xu L C, Zuo H K, Wu X M, Gao G Y, Zhu Z W 2018 Phys. Rev. B 98 085137Google Scholar

    [18]

    Shi J T, Han X T, Xie J F, Li L 2016 IEEE Trans. Appl. Supercond. 26 4300604Google Scholar

    [19]

    Zuo H K, Xia Z C, Li L 2014 CN Patent for Utility Model 203704948 U

    [20]

    Coldea A I, Andrew C M J, Analytis J G, McDonald R D, Bangure A F, Chu J H, Fisher I R, Canrrinton A 2009 Phys. Rev. Lett. 103 026404Google Scholar

    [21]

    Torque Magnetometry in Pulsed Fields, National High Magnetic Field Laboratory https://nationalmaglab.Org/user-facilities/pulsed-field-facility/pff-measurement-techniques/torque-magnetometry-pff [2019-7-12]

    [22]

    Wang K F, Graf D, Lei H C, Tozer S W, Petrovic C 2011 Phys. Rev. B 84 220401Google Scholar

    [23]

    Wang K F, Graf D, Wang L M, Lei H C, Tozer S W, Petrovic C 2012 Phys. Rev. B 85 041101Google Scholar

    [24]

    Liu Q Y, Zhang S Z, Ding L C, Zuo H K, Han X T 2019 IEEE International Instrumentation and Measurement Technology Conference Proceedings Auckland, New Zealand, May 20–23, 2019 p504

    [25]

    Zhao Y F, Liu H W, Zhang C L, Wang H C, Wang J F, Lin Z Q, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z L, Jia S, Xie X C, Wang J 2015 Phys. Rev. X 5 031037Google Scholar

    [26]

    Gotze K, Klotz J, Gnida D, Harima H, Aoki D, Demuer A, Elgazzar S, Wosnitza J, Kaxzorowski D, Sheikin I 2015 Phys. Rev. B 92 115141Google Scholar

    [27]

    Arnold F, Shekhar C, Wu S C, Sun Y, Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B H 2016 Nat. Commun. 7 11615Google Scholar

    [28]

    Zhang C L, Schindler F, Liu H W, Chang T R, Xu S Y, Chang G Q, Hua W, Jiang H, Yuan Z J, Sun J L, Jeng H T, Lu H Z, Lin H, Hasan M Z, Xie X C, Nerpert T, Jia S 2017 Phys. Rev. B 96 165148Google Scholar

    [29]

    Kim H, Wang K F, Nakajima Y, Hu R W, Ziemak S, Syers P, Wang L M, Hodovanets H, Denlinger J D, Brydon P M, Agterberg D F, Tanatar M A, Prozorov R, Paglione J 2018 Sci. Adv. 4 4513Google Scholar

    [30]

    Zhu Z W, Lin X, Liu J, Fauque B, Tao Q, Yang C L, Shi Y G, Behnia K 2015 Phys. Rev. Lett. 114 176601Google Scholar

    [31]

    Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S, Fisher L R 2010 Nature Phys. 6 960Google Scholar

    [32]

    Petrushevsky M, Lahoud E, Ron A, Maniv E, Diamant I, Neder I, Wiedmann S, Guduru V K, Chiappini F, Zeitler U, Maan J C, Chashka K, Kanigel A, Dagan Y 2012 Phys. Rev. B 86 045131Google Scholar

    [33]

    Zhang C L, Xu S Y, Wang C M, Lin Z Q, Du Z Z, Guo C, Lee C C, Lu H, Feng Y Y, Huang S M, Chang G Q, Hsu C H, Liu H W, Li L, Zhang C, Zhang J L, Xie X C, Neupert T, Hasan M Z, Lu H Z, Wang J F, Jia S 2017 Nature Phys. 13 979Google Scholar

    [34]

    Fauque B, Yang H, Sheikin I, Balicas L, Issi J P, Behnia K 2009 Phys. Rev. B 79 245124Google Scholar

    [35]

    Fauque B, Vignolle B, Proust C, Issi J P, Behnia K 2009 New J. Phys. 11 113012Google Scholar

    [36]

    Zuo H K, Bao J K, Liu Y, Wang J H, Jin Z, Xia Z C, Li L, Xu Z, Kang J, Zhu Z W, Cao G H 2017 Phys. Rev. B 95 014502Google Scholar

  • [1] Fang Jing-Yun, Sun Qing-Feng. Thermal dissipation of electric transport in graphene p-n junctions in magnetic field. Acta Physica Sinica, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [2] Zhao Jia-Yi, Hu Peng, Wang Yu-Lin, Wang Jin-Can, Tang Hui-Bo, Hu Guang-Yue. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil. Acta Physica Sinica, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [3] Liu Wan-Xin, Chen Rui, Liu Yong-Jie, Wang Jun-Feng, Han Xiao-Tao, Yang Ming. A pulsed high magnetic field facility for electric polarization measurements. Acta Physica Sinica, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [4] Mo Run-Yang, Wu Lin-Yan, Zhan Si-Nan, Zhang Yin-Hong. Effect of magnetic field on single-bubble in water. Acta Physica Sinica, 2015, 64(12): 124301. doi: 10.7498/aps.64.124301
    [5] Wang Shao-Liang, Li Liang, Ouyang Zhong-Wen, Xia Zheng-Cai, Xia Nian-Ming, Peng Tao, Zhang Kai-Bo. Development of high-magnetic-field, high-frequency electronic spin resonance system. Acta Physica Sinica, 2012, 61(10): 107601. doi: 10.7498/aps.61.107601
    [6] Yan Jun, Zeng Si-Liang, Zou Shi-Yang, Ni Fei-Fei, He Jian-Feng. Calculations of low-lying states of hydrogen atom in strong magnetic field by generalized pseudospectral method. Acta Physica Sinica, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [7] Li Hong-Yun, Lin Sheng-Lu, Liu Wei. Recurrence spectra of Rydberg NO molecules in a strong magnetic field. Acta Physica Sinica, 2010, 59(10): 6824-6831. doi: 10.7498/aps.59.6824
    [8] Zhao An-Kun, Ren Zhong-Ming, Ren Shu-Yang, Cao Guang-Hui, Ren Wei-Li. Effect of high magnetic field on Te films prepared by vacuum evaporation. Acta Physica Sinica, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [9] Zhang Jie, Liu Men-Quan, Wei Bing-Tao, Luo Zhi-Quan. The effect of strong magnetic field on proton branch of modified URCA process. Acta Physica Sinica, 2008, 57(9): 5448-5451. doi: 10.7498/aps.57.5448
    [10] Wang Shi-Qi, Lian Gui-Jun, Xiong Guang-Cheng. Electronic transport properties and simulation of random resistor network in granular mixture system of La0.7Ca0.3MnO3 and CeO 2. Acta Physica Sinica, 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [11] KANG JUN-YONG, TOZAWA SHINIRRO. CRYSTAL GROWTH IN A HIGH MAGNETIC FIELD. Acta Physica Sinica, 1996, 45(2): 324-329. doi: 10.7498/aps.45.324
    [12] HE XING-HONG, ZHOU FENG-QING, LI BAI-WEN, ZHANG CHENG-XIU. SPECTRUM CHARACTERISTICS OF AN ATOM IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1992, 41(8): 1244-1254. doi: 10.7498/aps.41.1244
    [13] PENG JIN-SHENG, HUANG XIANG-YOU, LIU WU. SPECTRUM DISTRIBUTION OF RESONANCE FLUORESCENCE FOR ATOMS IN STRONG MAGNETIC FIELD. Acta Physica Sinica, 1989, 38(9): 1545-1550. doi: 10.7498/aps.38.1545
    [14] XIONG XIAO-MING, ZHOU SHI-XUN. QUANTIZED MOTION OF TWO-DIMENSIONAL ELECTRONS IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1987, 36(7): 935-939. doi: 10.7498/aps.36.935
    [15] HUO YU-PING. SOME COMMENTS ON THE TRANSPORT PROCESSES IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, 1982, 31(4): 516-518. doi: 10.7498/aps.31.516
    [16] CHEN SHI-GANG. COMMENTS ON "TRANSPORT PROCESS UNDER STRONG MAGNETIC FIELD". Acta Physica Sinica, 1982, 31(5): 690-692. doi: 10.7498/aps.31.690
    [17] HU XI-WEI, HUO YU-PING, CHEN ZHENG-XONG, ZHANG CHENG. TRAVERSE TRANSPORT COEFFICIENTS OF PLASMA IN HOMOGENEOUS STRONG MAGNETIC FIELD. Acta Physica Sinica, 1981, 30(3): 315-324. doi: 10.7498/aps.30.315
    [18] CHEN SHI-GANG. TRANSPORT PROCESS UNDER STRONG MAGNETIC FIELD AND TWO STATIONARY SOLUTIONS OF THE LIOUVILLE EQUATION. Acta Physica Sinica, 1980, 29(10): 1323-1332. doi: 10.7498/aps.29.1323
    [19] ZHANG YU-HENG. THEORY OF OPTIMUM DESIGNING FOR THE SYSTEMS OF PULSE STRONG MAGNETIC FIELD. Acta Physica Sinica, 1980, 29(9): 1121-1134. doi: 10.7498/aps.29.1121
    [20] CHEN SHI-KANG. PERTURBATION THEORY OF TRANSVERSE TRANSPORT PROCESS IN STRONG MAGNETIC FIELD. Acta Physica Sinica, 1964, 20(7): 579-595. doi: 10.7498/aps.20.579
Metrics
  • Abstract views:  9608
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  19 July 2019
  • Accepted Date:  24 August 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019

/

返回文章
返回