Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries

Ha Shuai Zhang Wen-Ming Xie Yi-Ming Li Peng-Fei Jin Bo Niu Ben Wei Long Zhang Qi Liu Zhong-Lin Ma Yue Lu Di Wan Cheng-Liang Cui Ying Zhou Peng Zhang Hong-Qiang Chen Xi-Meng

Citation:

Transmission of low-energy Cl ions through Al2O3 insulating nanocapillaries

Ha Shuai, Zhang Wen-Ming, Xie Yi-Ming, Li Peng-Fei, Jin Bo, Niu Ben, Wei Long, Zhang Qi, Liu Zhong-Lin, Ma Yue, Lu Di, Wan Cheng-Liang, Cui Ying, Zhou Peng, Zhang Hong-Qiang, Chen Xi-Meng
PDF
HTML
Get Citation
  • The transmission of 10-keV Cl ions through Al2O3 insulating nanocapillaries is studied both by experiment and simulation. The double-peak structure in the transmitted angular distribution is found to be the same as our previous result. The peak around the direction of the primary beam is caused mainly by the directly transmitted Cl, and the other peak around the tilt angle of Al2O3 nanocapillaries is mainly induced by Cl+ and Cl0. The intensity of transmitted Cl decreases with the tilt angle increasing, which is in accord with the geometrically allowed transmission. Beyond the geometrically allowed angle, the transmitted projectiles are mainly Cl+ ions and Cl0 atoms. The ratio of transmitted Cl+ ion to Cl0 atom drops as tilt angle increases, and it turns more obvious when the tilt angle is larger than the limit of the geometrical transmission. A detailed physics process was developed within Geometry and Tracking 4 (Geant4) to perform the trajectory simulation, in which the forces from the deposited charges and the image charges, the scattering from the surfaces as well as the charge exchange are taken into consideration. The transmissions at the tilt angle of 1.6o are simulated for the cases without and with deposited charges of –100 e/capillary. For the deposition charge quantity of –100 e/capillary, the majority of the transmitted projectiles are mainly the directly transmitted Cl ions exiting to the direction of tilt angle, and the transmitted Cl0 and Cl+ account for a very small portion. While for the case with no deposited charges, the simulation results agree well with the experimental results. The dependence of the scattering process on the tilt angle, which results in the different features in the transmitted projectiles, is studied in detail by the simulation. It is found that the transmitted Cl0 atoms exit through single to multiple scattering, and most of transmitted Cl0 atoms exit through single and double scattering, and are centered along the axis of nanocapillaries, while Cl+ ions mainly exit by single scattering, which results in the fact that the intensity of the transmitted Cl0 atoms drops slower than that of the transmitted Cl+ ions with the increase of the tilt angle, leading the ratio of the transmitted Cl+ to Cl0 to decrease as the tilt angle increases in experiment. Our results describe the physical mechanism of low-energy ions through insulating nanocapillaries in detail, i.e. how the scattering process dominates the final transmission. It is found that the transmission of the negative ions in the energy range above 10 keV is caused by the scattering and the charge exchange process.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn ; Chen Xi-Meng, chenxm@lzu.edu.cn
    • Funds: the National Natural Science Foundation of China (Grant Nos. U1732269, 11475075) and the Swedish Foundation for International Cooperation in Research and Higher Education (Grant No. IB2018-8071)
    [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712Google Scholar

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [7]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [8]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [9]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [10]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y P, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [13]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1Google Scholar

    [14]

    Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [15]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [16]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [17]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin Bo, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [18]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [19]

    Sun G, Chen X M, Wang J, Chen Y, Xu J, Zhou C, Shao J, Cui Y, Ding B, Yin Y, Wang X, Lou F, Lv X, Qiu X, Jia J, Chen L, Xi F, Chen Z, Li L, Liu Z 2009 Phys. Rev. A 79 052902Google Scholar

    [20]

    Zhang Q, Liu Z l, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [21]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Ivn I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar

    [22]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum Methods Phys. Res., Sect. B 258 145Google Scholar

    [23]

    Yu M S, Cui H M, Ai F P, Jiang L F, Kong J S, Zhu X F 2018 Electrochem. Commun. 86 80Google Scholar

    [24]

    Yu M S, Chen L, Yang Y B, Xu S K, Zhang K, Cui H M, Zhu X F 2018 Electrochem. Commun. 90 34Google Scholar

    [25]

    Zhang J J, Huang W Q, Zhang K, Li D Z, Xu H Q, Zhu X F 2019 Electrochem. Commun. 100 48Google Scholar

    [26]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L 2003 Nucl. Instrum. Methods Phys. Res., Sect. A. 506 250Google Scholar

    [27]

    Winecki S, Cocke C L, Fry D, Stöckli M P 1996 Phys. Rev. A 53 4228Google Scholar

    [28]

    Firsov O B 1967 Sov. Phys.-Dokl. 11 732

    [29]

    Batra I P 1982 J. Phys. C: Solid State Phys. 15 5399Google Scholar

    [30]

    Fomin V M, Misko V R, Devreese J T, Brongersma H H 1998 Nucl. Instrum. Methods Phys. Res., Sect. B. 145 545Google Scholar

    [31]

    Lienemann J, Blauth D, Wethekam S, Busch M, Winter H, Wurz P, Fuselier S A, Hertzberg E 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 915Google Scholar

    [32]

    Jackson J D 1975 Classical Electrodynamics (2nd Ed.) (New York: Wiley)

    [33]

    Tokesi K, Wirtz L, Burgdorfer J 1999 Phys. Scr. T80 247Google Scholar

  • 图 1  实验装置和探测角示意图

    Figure 1.  Schematic diagram of experimental setup and the observation angle ϕ

    图 2  Al2O3微孔膜的电子扫描显微镜图像

    Figure 2.  Scanning electron microscope images of Al2O3 nanocapillaries.

    图 3  (a)不同倾角ψ下10 keV的Cl穿透角分布的计算结果(黑色为无沉积电荷的结果, 红色为沉积电荷为–100 e/capillary的结果); (b)不同倾角ψ下10 keV的Cl穿透角分布的实验结果

    Figure 3.  (a) Calculated transmitted angular distributions for 10 keV-Cl ions at various tile angles ψ (black lines for no deposited charge and red line for deposited charge of –100 e/capillary); (b) the experimental transmitted angular distributions for 10 keV-Cl ions at various tile angles ψ.

    图 4  加静电场后, (a)不同倾角ψ下10 keV的Cl穿透粒子的电荷态分布的计算结果(黑色为无沉积电荷的结果, 红色为沉积电荷为–100 e/capillary的结果); (b)不同倾角ψ下10 keV的Cl穿透粒子的电荷态分布的实验结果

    Figure 4.  Exerting electrostatic field, (a) thecalculated charge state distributions of transmitted projectiles for 10 keV-Cl at various tilt angles ψ (black line for no deposited charge and red line for deposited charge of –100 e/capillary); (b) the experimental charge state distributions of transmitted projectiles for 10 keV-Cl at various tilt angles ψ.

    图 5  实验与计算结果的中性穿透粒子(Cl0)角分布的峰位置随倾角的变化(实线是线性函数Y = X)

    Figure 5.  Peak position of experimental and simulated angular distribution of transmitted neutrals (Cl0) as a function of the tilt angle. The solid line is the linear function that shows the peak position of transmitted neutral shifts according to the tilt angle.

    图 6  (a)穿透的Cl, Cl0, Cl+粒子相对强度随倾角ψ变化; (b)穿透的Cl0和Cl+粒子相对强度随倾角ψ变化的对数坐标图

    Figure 6.  (a) Relative intensity of transmitted Cl, Cl0 and Cl+ vs. the tilt angle ψ for 10 keV-Cl ions; (b) the logarithm scale of the relative intensity of transmitted Cl0 and Cl+ as a function of the tilt angle ψ

    图 7  在不同倾角ψ下10 keV的Cl 穿透的Cl+/Cl0的比值(红色实心圆是实验结果, 黑色实心矩形是计算结果, 蓝色虚线代表几何穿透角)

    Figure 7.  Intensity ratio of transmitted Cl+ to Cl0 vs. the tilt angle ψ for the incident ions of 10 keV-Cl. The red solid circle corresponds to the experimental results; black solid square corresponds to the simulation results; blue dash line indicates the angle within which the geometrical transmission occurs.

    图 8  入射角为0.6°时, Firsov公式计算的散射粒子角分布

    Figure 8.  Scattered angular distribution at the incident angle of 0.6° to the surface given by Firsov formula.

    图 9  Cl离子穿过纳米微孔的原理简图(绿线为离子直接穿透的轨迹简图, 红线为一次碰撞散射的轨迹简图, 黑线为二次碰撞散射的简图)

    Figure 9.  Schematic diagram of Cl ions transmitted through a nanocapillary. The green line is a schematic diagram of the direct transmission of ions, the red line is a schematic diagram of ions transmitted by single scattering, and the black line is a schematic diagram of ions transmitted by double scattering.

    图 10  传输过程的电荷交换简图

    Figure 10.  Schematic diagram of charge state exchange during transmission.

    图 11  模拟计算的倾角为1.2°时出射的不同电荷态粒子的二维角分布(a)及对应的投影角分布(b)

    Figure 11.  Two dimensional transmitted angular distributions (a) and corresponding projections (b) of various charge states at tilt angle of 1.2° from simulations.

    图 12  模拟计算出的倾角为1.2°时经不同散射次数出射的Cl0二维角分布(a)及对应的投影角分布(b)

    Figure 12.  (a) Two-dimensional transmitted angular distributions and (b) corresponding projections of transmitted Cl0 exited from the capillaries by single scattering and double scattering and the total of them at tilt angle of 1.2° from simulations.

    图 13  出射粒子中不同电荷态所占比例随倾角的变化(E代表实验结果, S代表计算结果)

    Figure 13.  Portions of various charge states in transmitted projectiles as a function of the tilt angle. E and S stand for the results from experiments and simulations, respectively.

    图 14  模拟计算的不同角度0.8°, 1.2°, 1.6°下经过不同碰撞次数的出射的Cl0比例(黑色条形是经一次碰撞出射的, 红色条形是经两次散射出射的, 蓝色条形是经三次碰撞出射的)

    Figure 14.  Portions of transmitted Cl0 for various scattering at the tilt angle of 0.8°, 1.2°, 1.6°. The black bars stand for single scattering, the red bars for double scattering, and the blue bars for those scattered three times from simulations.

  • [1]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [2]

    Schiessl K, Palfinger W, Tőkési K, Nowotny H, Lemell C, Burgdőrfer J 2005 Phys. Rev. A 72 062902Google Scholar

    [3]

    Stolterfoht N, Hellhammer R, Bundesmann J, Fink D, Kanai Y, Hoshino M, Kambara T, Ikeda T, Yamazaki Y P 2007 Phys. Rev. A 76 022712Google Scholar

    [4]

    Skog P, Zhang H Q, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [5]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [6]

    Chen Y F, Chen X M, Lou F J, Xu J Z, Shao J X, Sun G Z, Wang J, Xi F Y, Yin Y Z, Wang X A, Xu J K, Cui Y, Ding B W 2009 Chin. Phys. B 18 2739Google Scholar

    [7]

    Zhang H Q, Akram N, Skog P, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. Lett. 108 193202Google Scholar

    [8]

    Zhang H Q, Akram N, Soroka I L, Trautmann C, Schuch R 2012 Phys. Rev. A 86 022901Google Scholar

    [9]

    Zhang H Q, Akram N, Schuch R 2016 Phys. Rev. A 94 032704Google Scholar

    [10]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y P, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502

    [11]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [12]

    Lemell C, Burgdörfer J, Aumayr F 2013 Prog. Surf. Sci. 88 237Google Scholar

    [13]

    Stolterfoht N, Yasunori Y 2016 Phys. Rep. 629 1Google Scholar

    [14]

    Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [15]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [16]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [17]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin Bo, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Schuch R, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [18]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Müller A M, Dobeli M, Song Z Y, Yang Z H, Schuch R, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [19]

    Sun G, Chen X M, Wang J, Chen Y, Xu J, Zhou C, Shao J, Cui Y, Ding B, Yin Y, Wang X, Lou F, Lv X, Qiu X, Jia J, Chen L, Xi F, Chen Z, Li L, Liu Z 2009 Phys. Rev. A 79 052902Google Scholar

    [20]

    Zhang Q, Liu Z l, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [21]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Ivn I, Gáll F, Sulik B, Víkor G, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar

    [22]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum Methods Phys. Res., Sect. B 258 145Google Scholar

    [23]

    Yu M S, Cui H M, Ai F P, Jiang L F, Kong J S, Zhu X F 2018 Electrochem. Commun. 86 80Google Scholar

    [24]

    Yu M S, Chen L, Yang Y B, Xu S K, Zhang K, Cui H M, Zhu X F 2018 Electrochem. Commun. 90 34Google Scholar

    [25]

    Zhang J J, Huang W Q, Zhang K, Li D Z, Xu H Q, Zhu X F 2019 Electrochem. Commun. 100 48Google Scholar

    [26]

    Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L 2003 Nucl. Instrum. Methods Phys. Res., Sect. A. 506 250Google Scholar

    [27]

    Winecki S, Cocke C L, Fry D, Stöckli M P 1996 Phys. Rev. A 53 4228Google Scholar

    [28]

    Firsov O B 1967 Sov. Phys.-Dokl. 11 732

    [29]

    Batra I P 1982 J. Phys. C: Solid State Phys. 15 5399Google Scholar

    [30]

    Fomin V M, Misko V R, Devreese J T, Brongersma H H 1998 Nucl. Instrum. Methods Phys. Res., Sect. B. 145 545Google Scholar

    [31]

    Lienemann J, Blauth D, Wethekam S, Busch M, Winter H, Wurz P, Fuselier S A, Hertzberg E 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 915Google Scholar

    [32]

    Jackson J D 1975 Classical Electrodynamics (2nd Ed.) (New York: Wiley)

    [33]

    Tokesi K, Wirtz L, Burgdorfer J 1999 Phys. Scr. T80 247Google Scholar

  • [1] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] Li Liang-Liang, Wang Xiao-Fang. Analytical model for scattering effect of energetic charged-particle beam in radiography of steep density gradient region. Acta Physica Sinica, 2022, 71(11): 115201. doi: 10.7498/aps.70.20212269
    [3] Li Liangliang,  Wang Xiaofang. An analytical model for scattering effect in energetic charged-particle radiography of a steep density gradient region and the characteristics of the resulting modulation structures. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212269
    [4] Li Shun, Li Zheng-Jun, Qu Tan, Li Hai-Ying, Wu Zhen-Sen. Propagation of double zero-order Bessel beam and its scattering properties to uniaxial anisotropic spheres. Acta Physica Sinica, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [5] Shi Ze-Lin, Cui Sheng-Cheng, Xu Qing-Shan. Modified analytic expression for the single-scattering phase function. Acta Physica Sinica, 2017, 66(18): 180201. doi: 10.7498/aps.66.180201
    [6] Fu Cheng-Hua. Analysis of optical scattering of micro-nano particles. Acta Physica Sinica, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [7] Ma Yan, Lin Shu-Yu, Xian Xiao-Jun. Volume pulsation and scattering of bubbles under the second Bjerknes force. Acta Physica Sinica, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [8] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] Zhang Hui-Yun, Liu Meng, Yin Yi-Heng, Wu Zhi-Xin, Shen Duan-Long, Zhang Yu-Ping. Study on scattering properties of the metal wire gating in a THz band based on Green function method. Acta Physica Sinica, 2013, 62(19): 194207. doi: 10.7498/aps.62.194207
    [11] Wang Hai-Hua, Sun Xian-Ming. Multiple scattering of light by mixtures of two different aerosol types. Acta Physica Sinica, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [12] Zhao Tai-Fei, Ke Xi-Zheng. Monte Carlo simulations for non-line-of-sight ultraviolet scattering coverage area. Acta Physica Sinica, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [13] He Jing-Bo, Liu Zhong, Hu Sheng-Liang. Detection of weak signal based on the sea clutter scattering. Acta Physica Sinica, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [14] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
    [15] Liu Wen-Jun, Mao Hong-Yan, Fu Guo-Qing, Qu Shi-Liang. Temporal statistics of multiply scattered terahertz pulses in scattering medium. Acta Physica Sinica, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [16] Chen Xing, Xia Yun-Jie. The scattering of two-mode squeezed vacuum state and entangled coherent state through a one-dimensional potential barrier. Acta Physica Sinica, 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [17] Wang Qing-Hua, Zhang Ying-Ying, Lai Jian-Cheng, Li Zhen-Hua, He An-Zhi. Application of Mie theory in biological tissue scattering characteristics analysis. Acta Physica Sinica, 2007, 56(2): 1203-1207. doi: 10.7498/aps.56.1203
    [18] Liu Li-Xiang, Du Guo-Hao, Hu Wen, Luo Yu-Yu, Xie Hong-Lan, Chen Min, Xiao Ti-Qiao. Application of quantitative imaging to elimination of scattering effect on X-ray in-line outline imaging. Acta Physica Sinica, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [19] Bai Lu, Wu Zhen-Sen, Chen Hui, Guo Li-Xin. Scattering of fundamental Gaussian beam from on-axis cluster spheres. Acta Physica Sinica, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [20] LI FEI-FEI, XU JING-JUN, LIU SI-MIN, QIAO HAI-JUN, ZHANG GUANG-YIN. PHOTOREFRACTIVE LIGHT-INDUCED BACKWARD SCATTERING IN c-CUT LiNbO3∶Fe CRYSTALS. Acta Physica Sinica, 2001, 50(12): 2341-2344. doi: 10.7498/aps.50.2341
Metrics
  • Abstract views:  6150
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2019
  • Accepted Date:  17 February 2020
  • Published Online:  05 May 2020

/

返回文章
返回