-
Energetic charged-particle beams produced from ultrashort ultra-intense laser plasma interactions play a vital role in charged-particle radiography. When such an energetic beam penetrates through a foil target, its energy loss is negligible, and the main physics process is small-angle scattering. Due to this scattering effect, charged-particle radiography of a target with a transversely distributed steep density gradient region will produce a modulation structure in the fluence distribution on the detection plane, which could be used to diagnose the steep density gradient region. In the past theoretical work on the scattering effect and the resulting modulation structure was done with Monte-Carlo simulations, which cost a lot of computing time and the studied parameter range was limited. In the present work an analytical model is developed to deal with the scattering effect inside the target and the modulation structure on the detection plane in radiography, which gives results quickly and coincides with Monte-Carlo simulations very well. By using this analytical model, the characteristics of modulation structures are analyzed. A dimensionless characteristic parameter related to radiography conditions is put forward, its range determines different modulation structures and also the probability of diagnosing a steep density gradient region of width ⪝μm
-
Keywords:
- scattering /
- radiography /
- charged-particle beam
-
[2] Lindl J 1995 Phys. Plasmas 2 3933-4024
[2] Zohuri B 2017 Inertial confinement fusion driven thermonuclear energy (Cham: Springer International Publishing AG)
[3] Chen B, Yang Z, Wei M, Pu Y, Hu X, Chen T, Liu S, Yan J, Huang T, Jiang S, Ding Y 2014. Phys. Plasmas. 21 122705
[5] Marshall F J, Ivancic S T, Mileham C, Nilson P M, Ruby J J, Stoeckl C, Scheiner B S, Schmitt M J 2021 Rev. Sci. Instrum. 92 033701
[6] Higginson A, Gray R J, King M, Dance R J, Williamson S D R, Butler N M H, Wilson R, Capdessue R, Armstrong C, Green J S, HawKes S J, Martin P, Wei W Q, Mirfayzi S R, Yuan X H, Kar S, Borghesi M, Clarke R J, Neely D, McKenna P 2018 Nat. Commun. 9 724
[7] Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth Cs. Esarey E, Swanson K, Fan-Chiang L, Bagdasarow F, Bobrova N, Gasilov V, Kron G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801
[8] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003
[9] Du B, Wang X F 2018 AIP Adv. 8 125328
[9] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P 2006 Phys. Rev. Lett. 97 045001
[10] Cobble J A, Johnson R P, Cowan T E, Renard-Le Galloudec N, Allen M 2002 J. Appl. Phys. 92 1775-1779
[11] Bethe H A 1953 Phys. Rev. 89 1256
[12] Highland V L 1975 Nucl. Instrum. Methods 129 497-499.
[13] Shao G, Wang X 2016 Phys. Plasmas 23 092703
[14] Zhang Y, Wang X 2020 Plasma Phys. Control. Fusion 62 095023
[15] Wu X J, Wang X F, Chen X H 2016 Chin. Phys. Lett. 33 065201
[16] Ferrari A, Sala P R, Fassò A, Ranft J, Siegen U 2005 FLUKA: a multi-particle transport code No. SLAC-R-773 Stanford Linear Accelerator Center (SLAC)
[17] Jackson J D 2005 Classical Electrodynamics 3rd ed. (Beijing: Higher Education Press)
Metrics
- Abstract views: 2272
- PDF Downloads: 35
- Cited By: 0