Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator

Tian Long Wang Qing-Wei Yao Wen-Xiu Li Qing-Hui Wang Ya-Jun Zheng Yao-Hui

Citation:

Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator

Tian Long, Wang Qing-Wei, Yao Wen-Xiu, Li Qing-Hui, Wang Ya-Jun, Zheng Yao-Hui
PDF
HTML
Get Citation
  • Second harmonic generation (SHG) is used to get continuous wave laser with a lot of applications, it is a major way to provide pump power for generating nonclassical states, especially for squeezed states and entanglement states. High-efficiency SHG resonant on atoms lines also provides laser sources for atomic entanglement generation, light-atom interaction and high-speed quantum memory. For the frequency-doubling process at 426 nm, the major challenge of increasing the conversion efficiency is the thermal effect caused by the absorption in crystal. The degradation of mode-match efficiency induced by the severely thermal effect limits the conversion efficiency of the second harmonic generator. Furthermore, the blue light induced infrared absorption (BLIIRA) in the nonlinear crystal intensifies the thermal effect, it makes the conversion efficiency of the frequency-doubling cavity and the stability of the output blue laser worse, and it is more serious at high input power. Based on the theoretical analysis of thermal lens, we find that the thermal lens should not be placed at the center of the crystal, the location of the equivalently thermals lens has a deviation from the center of the crystal. Follow the theoretical analysis of thermal lens, we design a ring cavity with a 10 mm-long periodically poled potassium titanyle phosphate (PPKTP) crystal to reduce the thermal lens effect induced mode-mismatch. The location of nonlinear crystal is adjusted precisely to reduce the mode-mismatch caused by the thermal lens under our theoretical analysis. Finally, we realized a high conversion efficiency blue laser at 426 nm with the conversion efficiency up to 83.1% with an output power of 428 mW after the adjustment of the crystal location, corresponding to our theoretical analysis well. The measured beam quality factors (M2 value) of the generated blue laser are $ M^2(x) = 1.05 $ and $ M^2(y) = 1.02 $, respectively. The measured power stability of Generated Blue laser in 15 mins is 1.25%. The output power of the SHG is strong enough to provide pump power for the generation of the continuous variable squeezed vacuum state at 852 nm and the long-term stability of the output blue laser is also measured to be fine. To the best of our knowledge, the conversion efficiency is the highest-reported one at this wavelength. We believe that such high-performance frequency doubling system is a fundamental building block for quantum information science based non-classical states.
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    [1]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [2]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [3]

    程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义 2019 物理学报 68 124205Google Scholar

    Cheng M Y, Wang Z H, He H J, Wang X Z, Zhu J F, Wei Z Y 2019 Acta Phys. Sin. 68 124205Google Scholar

    [4]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar

    [5]

    Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Sun X, Wang Y, Tian L, Shi S, Zheng Y, Peng K 2019 Opt. Lett. 44 1789Google Scholar

    [7]

    Eberle T, Handchen V, Schnabel R 2013 Opt. Expres 21 11546Google Scholar

    [8]

    Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar

    [9]

    Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar

    [10]

    霍美如, 秦际良, 孙颖榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Su Y R, Cheng J L, Yan Z H, Jia X J 2018 J. Quantum Opt. 24 134

    [11]

    李莹, 罗玉, 潘庆, 彭堃墀 2006 物理学报 55 5030Google Scholar

    Li Y, Luo Y, Pan Q, Peng K C 2006 Acta Phys. Sin. 55 5030Google Scholar

    [12]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [13]

    Yan Z, Wu L, Jia X, Liu Y, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio, M B, Serafini A, Wolf M M, Polzik E S 2010 Nat. Phys. 7 13

    [15]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [16]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar

    [17]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [18]

    Krauter H, Salart D, Muschik C A, Petersen J M, Shen H, Fernholz T, Polzik E S 2013 Nat. Phys. 9 400Google Scholar

    [19]

    Zhdanov B V, Lu Y, Shaffer M K, Miller W, Wright D, Knize R J 2008 Opt. Express 16 17585Google Scholar

    [20]

    Zhang Y, Liu J, Wu J, Ma R, Wang D, Zhang J 2016 Opt. Express 24 19769Google Scholar

    [21]

    Zuo X J, Yan Z H, Jia X J 2019 Appl. Phys. Express 12 032010Google Scholar

    [22]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [23]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 576Google Scholar

    [24]

    Tian J, Yang C, Xue J, Zhang Y, Li G, Zhang T 2016 J. Opt. 18 055506Google Scholar

    [25]

    Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar

    [26]

    Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar

    [27]

    Ashkin A, Boyd G, Dziedzic J 1966 IEEE J. Quantum Electron. QE 2 109

    [28]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [29]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [30]

    Uehara N, Gustafson E K, Fejer M M, Byer R L1997 Proceedings of the SPIE - the Interantional Society for Optical Engineerin(V2989) San Jose, CA, USA, Feb. 12–13, 1997 p57

    [31]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [32]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [33]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [34]

    Wang S, Pasiskevicius V, Laurell F, J 2004 J. Appl. Phys. 96 2023Google Scholar

  • 图 1  模式匹配率随着基频光功率变化关系. 实线为将晶体移动位置优化后的模式匹配率随着基频光功率变化关系; 虚线为将晶体放置在腔两个凹面镜中心时考虑热透镜效应后模式匹配率随着基频光功率变化关系

    Figure 1.  Mode-matching efficiency as function of the input power. Solid line: after the optimization; Dashed line: before the optimization.

    图 2  实验装置示意图

    Figure 2.  Schematic of experimental setup.

    图 3  倍频转换效率随着基频光功率变化关系图

    Figure 3.  Normalized blue laser power as function of temperature tuning. The input fundamental power is 180, 280 and 370 mW, respectively.

    图 4  倍频效率随着注入基频光功率变化关系图

    Figure 4.  Conversion efficiency as a function of input power.

    图 5  实验制备426 nm蓝光光束的M2因子测量结果

    Figure 5.  The measured beam quality factors (M2 value) of the generated blue laser.

    图 6  扫描倍频腔的透射强度(插图)及倍频腔自由运转10 mins内的透射峰漂移值

    Figure 6.  Transmission intensity of scanning Fabry-Perot cavity (inset) and drift value of transmission peak within 10 mins.

    图 7  倍频腔输出蓝光的功率稳定性

    Figure 7.  Measured power stability of blue laser.

  • [1]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [2]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [3]

    程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义 2019 物理学报 68 124205Google Scholar

    Cheng M Y, Wang Z H, He H J, Wang X Z, Zhu J F, Wei Z Y 2019 Acta Phys. Sin. 68 124205Google Scholar

    [4]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar

    [5]

    Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Sun X, Wang Y, Tian L, Shi S, Zheng Y, Peng K 2019 Opt. Lett. 44 1789Google Scholar

    [7]

    Eberle T, Handchen V, Schnabel R 2013 Opt. Expres 21 11546Google Scholar

    [8]

    Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar

    [9]

    Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar

    [10]

    霍美如, 秦际良, 孙颖榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Su Y R, Cheng J L, Yan Z H, Jia X J 2018 J. Quantum Opt. 24 134

    [11]

    李莹, 罗玉, 潘庆, 彭堃墀 2006 物理学报 55 5030Google Scholar

    Li Y, Luo Y, Pan Q, Peng K C 2006 Acta Phys. Sin. 55 5030Google Scholar

    [12]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [13]

    Yan Z, Wu L, Jia X, Liu Y, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio, M B, Serafini A, Wolf M M, Polzik E S 2010 Nat. Phys. 7 13

    [15]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [16]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar

    [17]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [18]

    Krauter H, Salart D, Muschik C A, Petersen J M, Shen H, Fernholz T, Polzik E S 2013 Nat. Phys. 9 400Google Scholar

    [19]

    Zhdanov B V, Lu Y, Shaffer M K, Miller W, Wright D, Knize R J 2008 Opt. Express 16 17585Google Scholar

    [20]

    Zhang Y, Liu J, Wu J, Ma R, Wang D, Zhang J 2016 Opt. Express 24 19769Google Scholar

    [21]

    Zuo X J, Yan Z H, Jia X J 2019 Appl. Phys. Express 12 032010Google Scholar

    [22]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [23]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 576Google Scholar

    [24]

    Tian J, Yang C, Xue J, Zhang Y, Li G, Zhang T 2016 J. Opt. 18 055506Google Scholar

    [25]

    Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar

    [26]

    Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar

    [27]

    Ashkin A, Boyd G, Dziedzic J 1966 IEEE J. Quantum Electron. QE 2 109

    [28]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [29]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [30]

    Uehara N, Gustafson E K, Fejer M M, Byer R L1997 Proceedings of the SPIE - the Interantional Society for Optical Engineerin(V2989) San Jose, CA, USA, Feb. 12–13, 1997 p57

    [31]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [32]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [33]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [34]

    Wang S, Pasiskevicius V, Laurell F, J 2004 J. Appl. Phys. 96 2023Google Scholar

  • [1] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min. Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] Zhang Xiao-Li, Wang Qing-Wei, Yao Wen-Xiu, Shi Shao-Ping, Zheng Li-Ang, Tian Long, Wang Ya-Jun, Chen Li-Rong, Li Wei, Zheng Yao-Hui. Influence of thermal lens effect on second harmonic process in semi-monolithic cavity scheme. Acta Physica Sinica, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] Zhang Tong, Zhang Wei-Guang, Cai Ya-Jun, Hu Xiao-Hong, Feng Ye, Wang Yi-Shan, Yu Jia. Master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber. Acta Physica Sinica, 2019, 68(23): 234204. doi: 10.7498/aps.68.20190925
    [4] Sun Tian-Jiao, Qian Xuan, Shang Ya-Xuan, Liu Jian, Wang Kai-You, Ji Yang. Formation mechanism of coherent rainbows. Acta Physica Sinica, 2018, 67(18): 184204. doi: 10.7498/aps.67.20180888
    [5] He Peng, Teng Hao, Zhang Ning-Hua, Liu Yang-Yang, Wang Zhao-Hua, Wei Zhi-Yi. A cavity mode size adjustable high average power Ti: sapphire femtosecond regenerative amplifier. Acta Physica Sinica, 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [6] Zhang Kong, Bai Jian-Dong, He Jun, Wang Jun-Min. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [7] Chen Shun-Yi, Ding Pan-Feng, Pu Ji-Xiong. Frequency doubling effect of off-axial vortex beam in the case of weak walk-off. Acta Physica Sinica, 2015, 64(24): 244204. doi: 10.7498/aps.64.244204
    [8] Chen Guo-Zhu, Shen Yong, Liu Qu, Zou Hong-Xin. Generation of 266 nm continuous-wave with elliptical Gaussian beams. Acta Physica Sinica, 2014, 63(5): 054204. doi: 10.7498/aps.63.054204
    [9] Liu Zhi, Diao Wen-Ting, Wang Jie-Ying, Liang Qiang-Bing, Yang Bao-Dong, He Jun, Zhang Tian-Cai, Wang Jun-Min. Investigation of experimental parameters of coherent population trapping with cesium vapor cell. Acta Physica Sinica, 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [10] Chang Yan-Qin, Shen Tao, Andreev Y. M., Shaiduko A. V., Huang Jin-Zhe, Wang Hong. Simulation of the temperature-beam coupling in frequency doubling of BBO crystals. Acta Physica Sinica, 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [11] Yan Guo-Jun, Chen Guang-De, Wu Ye-Long, Yang Jian-Qing. Second-harmonic power generated in the absorbing and birefringent nonlinear medium. Acta Physica Sinica, 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [12] Wang Li-Rong, Ma Jie, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang. Experimental study of ultracold cesium atom photoassociation spectrum using an amplitude modulation technique. Acta Physica Sinica, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [13] Zhao Jian-Ming, Wang Li-Rong, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Effect of external magnetic field on the coherence properties of degenerated two-level atomic system. Acta Physica Sinica, 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [14] Chen Yun-Lin, Yuan Jian-Wei, Yan Wei-Guo, Zhou Bin-Bin, Luo Yong-Feng, Guo Juan. Quasi-phase-matched second-harmonic-generation in bulk periodically poled LiNbO3 and optimal design. Acta Physica Sinica, 2005, 54(5): 2079-2083. doi: 10.7498/aps.54.2079
    [15] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [16] Zhao Jian-Ming, Zhao Yan-Ting, Huang Tao, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation of electromagnetically induced transparency with double-pumping lasers. Acta Physica Sinica, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [17] Wang Zheng-Ping, Teng Bing, Du Chen-Lin, Xu Xin-Guang, Fu Kun, Xu Gui-Bao, Wang Ji-Yang, Shao Zong-Shu. Frequency doubling property of the low symmetric nonlinear optical crystal BIBO. Acta Physica Sinica, 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [18] Xu Guang, Wang Tao, Zhu He-Yuan, Qian Lie-Jia, Fan Dian-Yuan, Li Fu-Ming. . Acta Physica Sinica, 2002, 51(10): 2261-2260. doi: 10.7498/aps.51.2261
    [19] Lv Tie-Zheng, Wang Tao, Qian Lie-Jia, Lu Xin, Wei Zhi-Yi, Zhang Jie. . Acta Physica Sinica, 2002, 51(6): 1268-1271. doi: 10.7498/aps.51.1268
    [20] Wang Zheng-Peng, Shao Yao-Peng, Xu Xin-Gang, Wang Ji-Yang, Liu Yao-Gang, Wei Jing-Qian, Shao Zang-Shu. . Acta Physica Sinica, 2002, 51(9): 2029-2033. doi: 10.7498/aps.51.2029
Metrics
  • Abstract views:  9559
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2019
  • Accepted Date:  15 November 2019
  • Published Online:  20 February 2020

/

返回文章
返回