Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser

Liu Jia-He Lu Jia-Zhe Lei Jun-Jie Gao Xun Lin Jing-Quan

Citation:

Effect of ambient gas pressure on characteristics of air plasma induced by nanosecond laser

Liu Jia-He, Lu Jia-Zhe, Lei Jun-Jie, Gao Xun, Lin Jing-Quan
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The ambient gas pressure has an important influence on the laser induced plasma characteristics. The effects of gas pressure on the characteristics of air plasma induced by nanosecond laser are studied by using the optical emission spectroscopy, and the relationship between the gas pressure and the spectral intensity, and between electron temperature and electron density of air plasma are discussed. The air gas pressure in chamber is continuously changed in a range from 10 to 100 kPa by using a mechanical pump and measured by using a barometer. The ns laser energy in experiment is fixed at 100 mJ in the whole experiment. The digital delay trigger (Stanford DG535/645) is used to trigger the laser and ICCD synchronously, and the delay and gate time of ICCD are set to be 0 and 5 μs, respectively. The experimental results show that air plasma emission spectrum consists of the line and continuous spectrum, and the spectral intensity of air plasma emission spectrum is dependent on gas pressure in a range from 10 to 100 kPa, and the evolution of atomic spectrum intensity with gas pressure is different from that of ion spectrum intensity. The air density in the region of laser breakdown increases with air pressure increasing, which leads the breakdown probability of air gas to increase, thus resulting in the air plasma spectral intensity increasing. Under the confinement action of the ambient air gas in the expanding region of air plasma, the collision probability and energy exchange probability among particles in the air plasma are both increased, and the trisomic recombination probability of ion-electron-atom is also increased. As a result, the atomic spectral intensity of O Ι 777.2 nm and N Ι 821.6 nm both increase with the air gas pressure increasing, and the spectral intensity is highest at 80 kPa, and then slowly decreases. But the spectral intensity of N II 500.5 nm reaches its maximum value at 40 kPa, and decreases as the pressure becomes greater than 40 kPa. The electron density of the air plasma increases with the air pressure increasing, and the growth rate becomes slow after 80 kPa. The electron temperature of the air plasma reaches a maximum value at 30 kPa. The plasma electron temperature gradually decreases as the pressure becomes greater than 30 kPa. The research results can provide an important experimental basis for studying the laser-induced air plasma characteristics at different altitudes, and also give important technical support for laser atmospheric transmission and atmospheric composition analysis in the future.
      Corresponding author: Gao Xun, lasercust@163.com
    [1]

    Liu L, O′Sullivan G, O′Reilly F, Long E, Wang X, Dunne P 2017 Opt. Express 25 9974Google Scholar

    [2]

    Pandhija S, Rai N K, Rai A K, Thakur S N 2010 Appl. Phys. B 98 231Google Scholar

    [3]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Lin C, Xin L, Gao J Y 2008 High Power Laser and Particle Beams 20 1603

    [4]

    Roskos H G, Thomson M D, Kreß M, Löffler A T 2007 Laser & Photonics Rev. 1 349

    [5]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [6]

    Ran P X, Hou H M, Luo S N 2017 J. Anal. At. Spectrom. 32 2254Google Scholar

    [7]

    Matsumoto A, Ohba H, Toshimitsu M, Akaoka K, Ruas A, Sakka T, Wakaida I 2018 Spectrochim.Acta. B 142 37Google Scholar

    [8]

    Hou H M, Yang B, Mao X L, Zorba V, Ran P X, Russo R E 2018 Opt. Express 26 13425Google Scholar

    [9]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, LaHaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta. B 125 112Google Scholar

    [10]

    Sallé B, Cremers D A, Maurice S, Wiens R C 2005 Spectrochim. Acta. B 60 479Google Scholar

    [11]

    Rezaei F, Tavassoli S H 2015 Appl. Phys. B 120 563Google Scholar

    [12]

    Cowpe J S, Pilkington R D, Astin J S, Hill A E 2009 J. Phys. D: Appl. Phys. 42 165202Google Scholar

    [13]

    Bashir S, Farid N, Mahmood K, Rafique M S 2012 Appl. Phys. A 107 203Google Scholar

    [14]

    Bindhu C V, Harilal S S, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 94 7402Google Scholar

    [15]

    Farid N, Harilal S S, Ding H, Hassanein A 2013 Appl. Phys. Lett. 103 191112Google Scholar

    [16]

    Liu D, Chen C S, Gao X, Lin J Q, Man B Y, Sun Y N, Li F F 2016 Eur. Phys. J. D 70 245Google Scholar

    [17]

    刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛 2013 物理学报 62 045201Google Scholar

    Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C, Hu B T 2013 Acta Phys.Sin. 62 045201Google Scholar

    [18]

    Nordstrom R J 1995 Appl. Spectrosc. 49 1490Google Scholar

    [19]

    林兆祥, 李小银, 程学武, 李发泉, 龚顺生 2003 光谱学与光谱分析 23 421Google Scholar

    Lin Z X, Li X Y, Cheng X W, Li F Q, Gong S S 2003 Spectrosc.Spect. Anal. 23 421Google Scholar

    [20]

    Glumac N, Elliott G 2007 Opt. Laser. Eng. 45 27Google Scholar

    [21]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p906

    [22]

    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic Press) p335

    [23]

    邱德仁 2001 原子光谱分析 (上海: 复旦大学出版社) 第37—38页

    Qiu D R 2001 Atomic Spectroscopy (Shanghai: Fudan University Press) pp37–38 (in Chinese)

  • 图 1  压强对纳秒激光诱导空气等离子体特性影响的实验装置

    Figure 1.  Experiment setup for the air pressure influence on the characteristics of air plasma induced by ns pulsed laser.

    图 2  激光诱导空气等离子体的发射光谱 (空气压强为100 kPa)

    Figure 2.  The optical emission spectroscopy of the air plasma (air pressure of 100 kPa).

    图 3  不同空气压强条件下的空气等离子体发射光谱

    Figure 3.  The optical emission spectroscopy of the air plasma at different air pressure.

    图 4  等离子体发射光谱强度随压强的变化(O Ι 777.2 nm, N Ι 746.8 nm和N II 500.5 nm)

    Figure 4.  The air plasma spectral intensity evolution with air pressure (O Ι 777.2 nm, N Ι 746.8 nm, and N II 500.5 nm).

    图 5  空气等离子体电子密度随压强变化曲线(插入图为100 kPa O Ι 844.6 nm谱线拟合)

    Figure 5.  The air plasma density evolutions with air pressure (100 kPa O Ι 844.6 nm spectral line fitting).

    图 6  空气等离子体电子温度随压强变化曲线

    Figure 6.  The air plasma temperature evolutions with air pressure.

    表 1  激光大气等离子体主要线状谱线的归属情况

    Table 1.  Identification of the observed emission lines of N and O.

    谱线种类谱线位置/nm跃迁形式
    N+399.53p(1D) → 3s(1P0)
    N+444.73d(3D0) → 3p(3D)
    O+464.93p(4D0) → 3s(4P)
    N+500.53p(3S) → 3s(3P0)
    N+517.63d(5D) → 3p(5P0)
    N+568.03p(3D) → 3s(3P0)
    O715.73p(1D2) → 3s($^1{\rm{D}}_2^0$)
    O777.23p(5P) → 3s(5S0)
    N821.63p(4P0) → 3s(4P)
    O844.73p(3P) → 3s(3S0)
    N868.33p(4D0) → 3s(4P)
    DownLoad: CSV

    表 2  氧原子谱线光谱信息

    Table 2.  Oxygen atomic line spectral information.

    Wavelength/nmEm/eVEn/eVAki/s–1gk
    O II 444.831.1528.362.52×1066
    O Ι 844.610.999.523.22×1073
    DownLoad: CSV
  • [1]

    Liu L, O′Sullivan G, O′Reilly F, Long E, Wang X, Dunne P 2017 Opt. Express 25 9974Google Scholar

    [2]

    Pandhija S, Rai N K, Rai A K, Thakur S N 2010 Appl. Phys. B 98 231Google Scholar

    [3]

    张立文, 林晨, 辛立, 高军毅 2008 强激光与粒子束 20 1603

    Zhang L W, Lin C, Xin L, Gao J Y 2008 High Power Laser and Particle Beams 20 1603

    [4]

    Roskos H G, Thomson M D, Kreß M, Löffler A T 2007 Laser & Photonics Rev. 1 349

    [5]

    Giacconi R 2003 Rev. Mod. Phys. 75 995Google Scholar

    [6]

    Ran P X, Hou H M, Luo S N 2017 J. Anal. At. Spectrom. 32 2254Google Scholar

    [7]

    Matsumoto A, Ohba H, Toshimitsu M, Akaoka K, Ruas A, Sakka T, Wakaida I 2018 Spectrochim.Acta. B 142 37Google Scholar

    [8]

    Hou H M, Yang B, Mao X L, Zorba V, Ran P X, Russo R E 2018 Opt. Express 26 13425Google Scholar

    [9]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, LaHaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta. B 125 112Google Scholar

    [10]

    Sallé B, Cremers D A, Maurice S, Wiens R C 2005 Spectrochim. Acta. B 60 479Google Scholar

    [11]

    Rezaei F, Tavassoli S H 2015 Appl. Phys. B 120 563Google Scholar

    [12]

    Cowpe J S, Pilkington R D, Astin J S, Hill A E 2009 J. Phys. D: Appl. Phys. 42 165202Google Scholar

    [13]

    Bashir S, Farid N, Mahmood K, Rafique M S 2012 Appl. Phys. A 107 203Google Scholar

    [14]

    Bindhu C V, Harilal S S, Tillack M S, Najmabadi F, Gaeris A C 2003 J. Appl. Phys. 94 7402Google Scholar

    [15]

    Farid N, Harilal S S, Ding H, Hassanein A 2013 Appl. Phys. Lett. 103 191112Google Scholar

    [16]

    Liu D, Chen C S, Gao X, Lin J Q, Man B Y, Sun Y N, Li F F 2016 Eur. Phys. J. D 70 245Google Scholar

    [17]

    刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛 2013 物理学报 62 045201Google Scholar

    Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C, Hu B T 2013 Acta Phys.Sin. 62 045201Google Scholar

    [18]

    Nordstrom R J 1995 Appl. Spectrosc. 49 1490Google Scholar

    [19]

    林兆祥, 李小银, 程学武, 李发泉, 龚顺生 2003 光谱学与光谱分析 23 421Google Scholar

    Lin Z X, Li X Y, Cheng X W, Li F Q, Gong S S 2003 Spectrosc.Spect. Anal. 23 421Google Scholar

    [20]

    Glumac N, Elliott G 2007 Opt. Laser. Eng. 45 27Google Scholar

    [21]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p906

    [22]

    Griem H R 1974 Spectral Line Broadening by Plasmas (New York: Academic Press) p335

    [23]

    邱德仁 2001 原子光谱分析 (上海: 复旦大学出版社) 第37—38页

    Qiu D R 2001 Atomic Spectroscopy (Shanghai: Fudan University Press) pp37–38 (in Chinese)

Metrics
  • Abstract views:  10201
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2019
  • Accepted Date:  04 January 2020
  • Published Online:  05 March 2020

/

返回文章
返回