Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy fluence measurement for pulse hard X-ray

Su Zhao-Feng Lai Ding-Guo Qiu Meng-Tong Xu Qi-Fu Ren Shu-Qing

Citation:

Energy fluence measurement for pulse hard X-ray

Su Zhao-Feng, Lai Ding-Guo, Qiu Meng-Tong, Xu Qi-Fu, Ren Shu-Qing
PDF
HTML
Get Citation
  • Pulsed high-energy fluence X-ray source is based on the “Flash II” accelerator. It can be used to carry out effect vulnerability and sensitivity test of unit level system generated electromagnetic pulse (SGEMP). The energy fluence of pulsed hard X-ray is a main parameter of the equipment beam. At present, theoretical calculation method is widely used. Energy fluence can be calculated according to the dose, energy spectrum and energy absorption coefficient of each energy segment.The principle measuring energy fluence of pulsed hard X-ray by total absorption method is introduced. The photoelectric cell with lutetium silicate (LSO) scintillator is selected as a core component of the detection system, and the measurement system is developed. It is composed of scintillation detector, LSO scintillator, dimmer film, photon collimator, visible light shielding material, power supply and signal collecting system. The conversion coefficient between the incident photon energy and the waveform parameter is calibrated by a standard X-ray source. The energy fluence measurement experiment is carried out with the high-energy beam source of the “Flash II” accelerator as an experimental platform. In order to meet the requirements of the effect test experiments, the series diode structure is used in the accelerator for forming a high strength and large area uniform X-ray source. In the experiment, the LiF TLD is located in the front of the phototube and used to monitor the dose. According to the measured waveform, the actual energy of the incident photons is calculated. Combined with the receiving area of incident photons, the energy fluence of pulsed hard X-ray is calculated. The average measured value is 35.9 mJ/cm2 in 5 consecutive experiments. Energy fluence calculated from the measured dose and energy spectrum is 39.8 mJ/cm2. The results of the two methods are compared.It can be found that the experimental result is about 9.8% smaller than the theoretical value. The reasons are as follows. According to the law of exponential decay of rays in matter, in fact, the scintillator cannot absorb all the rays, and some of the rays can penetrate through, the energy of these rays cannot be detected, and thus giving rise to small experimental value. Due to the limited energy point of quasi-monoenergetic source, the sensitivity under the mean photon energy is taken as the sensitivity of the detector, and therefore there is a certain degree of uncertainty. The successful application of the measurement technology provides a good experimental method for the following similar research, and can also provide a reference for X-ray intensity analysis.
      Corresponding author: Su Zhao-Feng, xcw9504@163.com
    [1]

    Failor B H, Coverdale C A 1999 Rev. Sci. Instrum. 70 569Google Scholar

    [2]

    王雅琴, 胡广月, 赵斌, 郑坚 2017 物理学报 66 104202Google Scholar

    Wang Y Q, Hu G Y, Zhao B, Zheng J 2017 Acta Phys. Sin. 66 104202Google Scholar

    [3]

    戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202Google Scholar

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202Google Scholar

    [4]

    Hazelton R C, Yadlowsky E J, Moschella J J 2003 IEEE Trans. Plasma Sci. 31 1355Google Scholar

    [5]

    John E, R, Miriam G R, Arnold B 2003 Hard X-Ray and Gamma-Ray Detector Physics V. San Diego, California, USA, August 3, 2003 p334

    [6]

    Meachum J S, Childers F K, Riordan J C 1991 Proceedings of the 8th IEEE International Pulsed Power Conf. San Diego, California, USA, June 16–19, 1991 p571

    [7]

    Ware K D, Bell D E, Gullickson R L 2001 Proceedings of the 13th IEEE International Pulsed Power Conf. Las Vegas, Nevada, USA, June 17–22, 2001 p350

    [8]

    Pellinen D, Ashby S, Gillis P, Nielsen K, Spence P 1979 Proceedings of the 2nd IEEE International Pulsed Power Conf. Lubbock, Texas, USA, June 12, 1979 p410

    [9]

    蒯斌, 邱爱慈, 王亮平, 林东生, 丛培天, 梁天学 2005 强激光与粒子束 17 1739

    Kuai B, Qiu A C, Wang L P, Lin D S, Cong P T, Liang T X 2005 High Power Las. Part. Beam. 17 1739

    [10]

    李进玺, 吴伟, 来定国, 程引会, 马良, 赵墨, 郭景海, 周辉 2014 强激光与粒子束 26 035005Google Scholar

    Li J X, Wu W, Lai D G, Cheng Y H, Ma L, Zhao M, Guo J H, Zhou H 2014 High Power Las. Part. Beam. 26 035005Google Scholar

    [11]

    汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社) 第61页

    Ji C S 1990 Handbook of Nuclear Radiation Detectors and Their Experiment Techniques (Beijing: Atomic Energy Press) p61 (in Chinese)

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Power Las. Part. Beam. 32 035005

    [13]

    Kirkby C J 2005 Ph. D. Dissertation (Canada: University of Alberta)

    [14]

    Wesley P, Aparecido A C, Walter K S, et al. 2010 Instrum. Sci. Technol. 38 210Google Scholar

    [15]

    张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹玮 2008 物理学报 57 4238Google Scholar

    Zhang X H, Zhao B S, Miao Z H, Zhu X P, Liu Y A, Zou W 2008 Acta Phys. Sin. 57 4238Google Scholar

    [16]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工业大学出版社) 第103页

    Ding H L 2010 Nuclear Radiation Detectors (Harbin: Harbin Institute of Technology Press) p103 (in Chinese)

    [17]

    Nitzan M, Mahler Y, Bodenheimer J S, Siew F P 1983 IEEE Trans. Biomed. Eng. BME-30 737Google Scholar

    [18]

    Horiai T, Kurosawa S, Murakami R, Yamaji A, Shoji Y, Ohashi Y, Pejchal J, Kamada K, Yokota Y, Yoshikawa A 2017 J. Cryst. Growth 468 391Google Scholar

    [19]

    牛胜利, 雷林峰, 赵军, 张殿辉 2003 核电子学与探测技术 23 129Google Scholar

    Niu S L, Lei L F, Zhao J, Zhang D H 2003 Nucl. Electron. Detect. Technol. 23 129Google Scholar

    [20]

    宋朝晖, 管兴胤, 代秋声, 王奎禄, 刘俊勇 2004 原子能科学技术 38 223Google Scholar

    Song C H, Guan X Y, Dai Q H, Wang K L, Liu J Y 2004 Atom. Energ. Sci. Technol. 38 223Google Scholar

    [21]

    任国浩, 王绍华, 李焕英, 陆晟 2003 无机材料学报 18 269Google Scholar

    Ren G H, Wang S H, Li H Y, Lu S 2003 J. Inorg. Mater. 18 269Google Scholar

    [22]

    周海洋, 朱晓东, 詹如娟 2010 物理学报 59 1620Google Scholar

    Zhou H Y, Zhu X D, Zhan R J 2010 Acta Phys. Sin. 59 1620Google Scholar

    [23]

    张显鹏, 欧阳晓平, 张忠兵, 田耕, 陈彦丽, 李大海, 张小东 2008 物理学报 57 82Google Scholar

    Zhang X P, Ouyang X P, Zhang Z B, Tian G, Chen Y L, Li D H, Zhang X D 2008 Acta Phys. Sin. 57 82Google Scholar

  • 图 1  硬X射线能注量测量系统组成示意图

    Figure 1.  The abridged general view of the fluence measurement system for pulse hard X-ray.

    图 2  标定平台组成框图

    Figure 2.  The block diagram of the calibration platform composition.

    图 3  探测器灵敏度标定现场图

    Figure 3.  The field diagram of detector sensitivity calibration.

    图 4  能注量测量实验框图

    Figure 4.  Experimental diagram of energy fluence measurement.

    图 5  能注量测量典型波形

    Figure 5.  Typical waveform of energy fluence measurement.

    表 1  几种常见高密度闪烁体参数对比

    Table 1.  The parameter comparison of several common high density scintillators.

    闪烁体最强发射波长/nm闪烁衰减时间/ns折射率密度/g·cm–3相对光输出/%
    Bi4Ge3O124803002.157.1312.0—14.0
    BSO4802/30/1002.066.802.0—5.0
    LSO:Ce420401.827.4075.0
    PbWO4480102.168.200.5—1.0
    GSO:Ce45031/651.906.7120.0
    ZnWO448050002.207.8726.0
    CdWO454050002.307.9040.0
    CaWO454050002.307.9040.0
    DownLoad: CSV

    表 2  入射光子透过不同厚度闪烁体的透射率

    Table 2.  The transmissivity of the photon transmitting scintillators of different thicknesses.

    Thicknesses of scintillators /mm0.0110.0015.0020.0025.0030.0035.00
    Transmissivity/%97.82001.99700.87500.44400.22700.12000.0695
    DownLoad: CSV

    表 3  探测器在不同能量下的灵敏度

    Table 3.  Sensitivity of the detector at different energies.

    靶材光谱仪电压/kV光谱仪电流/mAX射线能量/keV本底电流/nA输出电流/nA剂量率/mGy·s–1灵敏度/10–17 C·cm2·MeV–1
    Pb1002575.03.924.28.785.29
    W953059.22.211.93.256.79
    Dy753546.03.729.450.773.87
    Sn506025.33.926.755.773.13
    DownLoad: CSV

    表 4  连续5次实验的能注量测量结果

    Table 4.  Measurement results of energy fluence in five successive experiments.

    发次二极管电压/kV二极管电流/kA剂量/rad能注量/mJ·cm–2
    1705311415.636.0
    2741315342.435.0
    3686323293.437.0
    4746327309.336.6
    5718305325.634.8
    平均值719.2 ± 25.0316.2 ± 8.9337.3 ± 47.435.9 ± 1.0
    DownLoad: CSV

    表 5  脉冲硬X射线能注量理论值

    Table 5.  Theoretial values of pulsed hard X-ray energy fluence.

    能量/keV15306090120150
    能谱归一化数值0.11740.22600.21100.14650.11040.0865
    质能吸收系数/cm2·kg–197904080143696969
    能注量/ mJ·cm–20.047610.219965.859068.434046.354754.97756
    能量/keV180210300400500600
    能谱归一化数值0.05330.03190.01030.00360.00210.0004
    质能吸收系数/cm2·kg–129.129.129.129.129.129.1
    能注量/ mJ·cm–27.275544.360811.417930.497080.292620.06403
    DownLoad: CSV
  • [1]

    Failor B H, Coverdale C A 1999 Rev. Sci. Instrum. 70 569Google Scholar

    [2]

    王雅琴, 胡广月, 赵斌, 郑坚 2017 物理学报 66 104202Google Scholar

    Wang Y Q, Hu G Y, Zhao B, Zheng J 2017 Acta Phys. Sin. 66 104202Google Scholar

    [3]

    戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔 2014 物理学报 63 104202Google Scholar

    Qi J C, Ye L L, Chen R C, Xie H L, Ren Y Q, Du G H, Deng B, Xiao T Q 2014 Acta Phys. Sin. 63 104202Google Scholar

    [4]

    Hazelton R C, Yadlowsky E J, Moschella J J 2003 IEEE Trans. Plasma Sci. 31 1355Google Scholar

    [5]

    John E, R, Miriam G R, Arnold B 2003 Hard X-Ray and Gamma-Ray Detector Physics V. San Diego, California, USA, August 3, 2003 p334

    [6]

    Meachum J S, Childers F K, Riordan J C 1991 Proceedings of the 8th IEEE International Pulsed Power Conf. San Diego, California, USA, June 16–19, 1991 p571

    [7]

    Ware K D, Bell D E, Gullickson R L 2001 Proceedings of the 13th IEEE International Pulsed Power Conf. Las Vegas, Nevada, USA, June 17–22, 2001 p350

    [8]

    Pellinen D, Ashby S, Gillis P, Nielsen K, Spence P 1979 Proceedings of the 2nd IEEE International Pulsed Power Conf. Lubbock, Texas, USA, June 12, 1979 p410

    [9]

    蒯斌, 邱爱慈, 王亮平, 林东生, 丛培天, 梁天学 2005 强激光与粒子束 17 1739

    Kuai B, Qiu A C, Wang L P, Lin D S, Cong P T, Liang T X 2005 High Power Las. Part. Beam. 17 1739

    [10]

    李进玺, 吴伟, 来定国, 程引会, 马良, 赵墨, 郭景海, 周辉 2014 强激光与粒子束 26 035005Google Scholar

    Li J X, Wu W, Lai D G, Cheng Y H, Ma L, Zhao M, Guo J H, Zhou H 2014 High Power Las. Part. Beam. 26 035005Google Scholar

    [11]

    汲长松 1990 核辐射探测器及其实验技术手册 (北京: 原子能出版社) 第61页

    Ji C S 1990 Handbook of Nuclear Radiation Detectors and Their Experiment Techniques (Beijing: Atomic Energy Press) p61 (in Chinese)

    [12]

    苏兆锋, 来定国, 邱孟通, 任书庆, 徐启福, 杨实 2020 强激光与粒子束 32 035005

    Su Z F, Lai D G, Qiu M T, Ren S Q, Xu Q F, Yang S 2020 High Power Las. Part. Beam. 32 035005

    [13]

    Kirkby C J 2005 Ph. D. Dissertation (Canada: University of Alberta)

    [14]

    Wesley P, Aparecido A C, Walter K S, et al. 2010 Instrum. Sci. Technol. 38 210Google Scholar

    [15]

    张兴华, 赵宝升, 缪震华, 朱香平, 刘永安, 邹玮 2008 物理学报 57 4238Google Scholar

    Zhang X H, Zhao B S, Miao Z H, Zhu X P, Liu Y A, Zou W 2008 Acta Phys. Sin. 57 4238Google Scholar

    [16]

    丁洪林 2010 核辐射探测器 (哈尔滨: 哈尔滨工业大学出版社) 第103页

    Ding H L 2010 Nuclear Radiation Detectors (Harbin: Harbin Institute of Technology Press) p103 (in Chinese)

    [17]

    Nitzan M, Mahler Y, Bodenheimer J S, Siew F P 1983 IEEE Trans. Biomed. Eng. BME-30 737Google Scholar

    [18]

    Horiai T, Kurosawa S, Murakami R, Yamaji A, Shoji Y, Ohashi Y, Pejchal J, Kamada K, Yokota Y, Yoshikawa A 2017 J. Cryst. Growth 468 391Google Scholar

    [19]

    牛胜利, 雷林峰, 赵军, 张殿辉 2003 核电子学与探测技术 23 129Google Scholar

    Niu S L, Lei L F, Zhao J, Zhang D H 2003 Nucl. Electron. Detect. Technol. 23 129Google Scholar

    [20]

    宋朝晖, 管兴胤, 代秋声, 王奎禄, 刘俊勇 2004 原子能科学技术 38 223Google Scholar

    Song C H, Guan X Y, Dai Q H, Wang K L, Liu J Y 2004 Atom. Energ. Sci. Technol. 38 223Google Scholar

    [21]

    任国浩, 王绍华, 李焕英, 陆晟 2003 无机材料学报 18 269Google Scholar

    Ren G H, Wang S H, Li H Y, Lu S 2003 J. Inorg. Mater. 18 269Google Scholar

    [22]

    周海洋, 朱晓东, 詹如娟 2010 物理学报 59 1620Google Scholar

    Zhou H Y, Zhu X D, Zhan R J 2010 Acta Phys. Sin. 59 1620Google Scholar

    [23]

    张显鹏, 欧阳晓平, 张忠兵, 田耕, 陈彦丽, 李大海, 张小东 2008 物理学报 57 82Google Scholar

    Zhang X P, Ouyang X P, Zhang Z B, Tian G, Chen Y L, Li D H, Zhang X D 2008 Acta Phys. Sin. 57 82Google Scholar

  • [1] Song Wen-Gang, Zhang Li-Jun, Zhang Jing, Wang Guan-Ying. Research on digital pulse processing techniques for silicon drift detector. Acta Physica Sinica, 2022, 71(1): 012903. doi: 10.7498/aps.71.20211062
    [2] Zhang Yan-Wen, Guo Gang, Xiao Shu-Yan, Yin Qian, Yang Xin-Yu. Measurement of medium-energy proton flux. Acta Physica Sinica, 2022, 71(1): 012902. doi: 10.7498/aps.71.20211561
    [3] Huang Guang-Wei, Wu Kun, Chen Ye, Li Lin-Xiang, Zhang Si-Yuan, Wang Zun-Gang, Zhu Hong-Ying, Zhou Chun-Zhi, Zhang Yi-Yun, Liu Zhi-Qiang, Yi Xiao-Yan, Li Jin-Min. Response to 14 MeV neutrons for single-crystal diamond detectors. Acta Physica Sinica, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [4] Li Qian-Li, Hu Ya-Hua, Ma Yi-Fan, Sun Zhi-Xiang, Wang Min, Liu Xiao-Lin, Zhao Jing-Tai, Zhang Zhi-Jun. Preparation and properties for X-ray scintillation screen based on ZnO:In nanorod arrays. Acta Physica Sinica, 2020, 69(10): 102902. doi: 10.7498/aps.69.20200282
    [5] Zhou Qing-Yong, Wei Zi-Qing, Jiang Kun, Deng Lou-Lou, Liu Si-Wei, Ji Jian-Feng, Ren Hong-Fei, Wang Yi-Di, Ma Gao-Feng. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar. Acta Physica Sinica, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [6] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [7] Yao Zhi-Ming, Duan Bao-Jun, Song Gu-Zhou, Yan Wei-Peng, Ma Ji-Ming, Han Chang-Cai, Song Yan. A method of evaluating the relative light yield of ST401 irradiated by pulsed neutron. Acta Physica Sinica, 2017, 66(6): 062401. doi: 10.7498/aps.66.062401
    [8] Zhu-Yue, Zhang Zi-Liang, Yang Yan-Ji, Xue Rong-Feng, Cui Wei-Wei, Lu Bo, Wang Juan, Chen Tian-Xiang, Wang Yu-Sa, Li Wei, Han Da-Wei, Huo Jia, Hu Wei, Li Mao-Shun, Zhang Yi, Zhu Yu-Xuan, Liu Miao, Zhao Xiao-Fan, Chen Yong. Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite. Acta Physica Sinica, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [9] Dai Jin-Fei, Zhao Bao-Sheng, Sheng Li-Zhi, Zhou Yan-Nan, Chen Chen, Song Juan, Liu Yong-An, Li Lin-Sen. Ffluorescence X-ray source used for calibrating the detector of X-ray navigation. Acta Physica Sinica, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [10] Zhang Zhi-Guo. Realization and experiment of vertical multijunction integrated photovoltaic Si X-ray detector. Acta Physica Sinica, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [11] Yu Bo, Chen Bo-Lun, Hou Li-Fei, Su Ming, Huang Tian-Xuan, Liu Shen-Ye. Hard X-ray measurement for indirect-driven imploding by chemical vapor deposited diamond detectors. Acta Physica Sinica, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [12] Yan Zhen-Gang, Lin Ying-Lu, Yang Juan, Li Zhen-Hua, Bian Bao-Min. The distribution functions of characteristic quantities for random noise signal of photodetector. Acta Physica Sinica, 2012, 61(20): 200502. doi: 10.7498/aps.61.200502
    [13] Hu Hui-Jun, Zhao Bao-Sheng, Sheng Li-Zhi, Sai Xiao-Feng, Yan Qiu-Rong, Chen Bao-Mei, Wang Peng. X-ray photon counting detector for x-ray pulsar-based navigation. Acta Physica Sinica, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [14] Xu Miao-Hua, Li Hong-Wei, Liu Feng, Liu Bi-Cheng, Du Fei, Zhang Lu, Su Lu-Ning, Li Ying-Jun, Li Yu-Tong, Chen Jia-Er, Zhang Jie. Experimental studies of the characteristics of a real-time ion detector-plastic scintillator. Acta Physica Sinica, 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [15] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [16] Su Zhao-Feng, Yang Hai-Liang, Qiu Ai-Ci, Sun Jian-Feng, Cong Pei-Tian, Wang Liang-Ping, Lei Tian-Shi, Han Juan-Juan. Measurements of energy spectra for high energy pulsed X-ray. Acta Physica Sinica, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [17] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [18] Xu Rong-Kun, Guo Chun, Wen Shu-Huai, Xia Guang-Xin, Ning Jia-Min, Song Feng-Jun, He Xi-Jun, Wu Yong-Gang, Gu Mu, Chen Ling-Yan, Wu Xiang. Study on modifying the output properties of BaF2 scintilation spectru m. Acta Physica Sinica, 2003, 52(9): 2140-2144. doi: 10.7498/aps.52.2140
    [19] SUN JING-WEN. PULSE CALIBRATION TECHNIQUE OF X-RAY DETECTOR. Acta Physica Sinica, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [20] XU PING-MAO. ANALYSIS OF THE BULK-ABSORBING PYROELECTRIC DETECTORS WITH EDGE ELECTRODES. Acta Physica Sinica, 1980, 29(11): 1445-1451. doi: 10.7498/aps.29.1445
Metrics
  • Abstract views:  5997
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2019
  • Accepted Date:  09 March 2020
  • Available Online:  09 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回