Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement of magnetic penetration depth in superconducting films by two-coil mutual inductance technique

Zhang Ruo-Zhou Qin Ming-Yang Zhang Lu You Li-Xing Dong Chao Sha Peng Yuan Jie Jin Kui

Citation:

Measurement of magnetic penetration depth in superconducting films by two-coil mutual inductance technique

Zhang Ruo-Zhou, Qin Ming-Yang, Zhang Lu, You Li-Xing, Dong Chao, Sha Peng, Yuan Jie, Jin Kui
PDF
HTML
Get Citation
  • The magnetic penetration depth (λ) of a superconductor is an important parameter which connects the macroscopic electrodynamics with the microscopic mechanism of superconductivity. High-accuracy measurement of λ is of great significance for revealing the pairing mechanism of superconductivity and exploring the applications of superconductors. Among various methods used to measure λ of superconducting films, the two-coil mutual inductance (MI) technique has been widely adopted due to its high precision and simplicity. In this paper, we start with introducing the principle of MI technique and pointing out that its accuracy is mainly limited by the uncertainties in the geometric parameters (e.g. the distance between two coils) and the leakage flux around the film edge. On this basis, we build a homemade transmission-type MI device with a delicate design to achieve high-accuracy. Two coils are fixed by a single-crystal sapphire block machined with high precisions to minimize the uncertainty in geometry. As a result, the reproducibility in induced voltage measured with sample remounted is better than 4%. Besides, the flux leakage around the film edge is accurately determined by measuring a thick Nb film and Nb foils. The voltage induced by leakage flux is only around 1% of that measured in the normal state. Therefore, the absolute value of λ can be accurately extracted after flux leakage subtraction and normalization. It is shown that the error of the measured λ is less than 10% for a typical superconducting film with a thickness of 100 nm and a penetration depth of 150 nm. Furthermore, the performance of our apparatus is tested on epitaxial NbN films with thickness of 6.5 nm. The results show that the low temperature variation of superfluid density is well described by the dirty s-wave BCS theory, and at temperatures close to Tc, the superfluid density decrease drastically, owing to the Berezinski-Kosterlitz-Thouless transition transition. Moreover, the zero-temperature magnetic penetration depth and the superconducting energy gap extracted from the fitting parameters are both consistent with the reported values. Our device provides an ideal platform for carrying out detailed studies of the dependence of λ on temperature, chemical composition and epitaxial strain, etc. It could also be utilized to characterize other parameters of superconductor such as the critical current density, and when combined with the ionic liquid gating technique, our device offers an efficient route for revealing the microscopic mechanism of superconductivity.
      Corresponding author: Jin Kui, kuijin@iphy.ac.cn
    [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    London F, London H 1935 Proc. R. Soc. A 149 71Google Scholar

    [3]

    Prozorov R, Giannetta R W 2006 Supercond. Sci. Technol. 19 R41Google Scholar

    [4]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505Google Scholar

    [5]

    Hardy W N, Bonn D A, Morgan D C, Liang R, Zhang K 1993 Phys. Rev. Lett. 70 3999Google Scholar

    [6]

    Skinta J A, Kim M S, Lemberger T R, Greibe T, Naito M 2002 Phys. Rev. Lett. 88 207005Google Scholar

    [7]

    Fletcher J D, Carrington A, Taylor O J, Kazakov S M, Karpinski J 2005 Phys. Rev. Lett. 95 097005Google Scholar

    [8]

    Emery V J, Kivelson S A 1995 Nature 374 434Google Scholar

    [9]

    Božović I, He X, Wu J, Bollinger A T 2016 Nature 536 309Google Scholar

    [10]

    Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, Timusk T 2004 Nature 430 539Google Scholar

    [11]

    Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, Yu X H 1989 Phys. Rev. Lett. 62 2317Google Scholar

    [12]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [13]

    Joshi K R, Nusran N M, Tanatar M A, Cho K, Bud’ko S L, Canfield P C, Fernandes R M, Levchenko A, Prozorov R 2019 arXiv: 1903.00053 [cond-mat.supr-con]

    [14]

    Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R, Zheng G Q 2018 Phys. Rev. Lett. 121 167004Google Scholar

    [15]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar

    [16]

    Hashimoto K, Shibauchi T, Kasahara S, Ikada K, Tonegawa S, Kato T, Okazaki R, van der Beek C J, Konczykowski M, Takeya H, Hirata K, Terashima T, Matsuda Y 2009 Phys. Rev. Lett. 102 207001Google Scholar

    [17]

    Hashimoto K, Shibauchi T, Kato T, Ikada K, Okazaki R, Shishido H, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Matsuda Y 2009 Phys. Rev. Lett. 102 017002Google Scholar

    [18]

    Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, Yuan H 2018 Proc. Natl. Acad. Sci. U.S.A. 115 5343Google Scholar

    [19]

    Van Degrift C T 1975 Rev. Sci. Instrum. 46 599Google Scholar

    [20]

    Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, Yuan H Q 2016 Phys. Rev. Lett. 117 027001Google Scholar

    [21]

    Okazaki R, Konczykowski M, van der Beek C J, Kato T, Hashimoto K, Shimozawa M, Shishido H, Yamashita M, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Shibauchi T, Matsuda Y 2009 Phys. Rev. B 79 064520Google Scholar

    [22]

    Ren C, Wang Z S, Luo H Q, Yang H, Shan L, Wen H H 2008 Phys. Rev. Lett. 101 257006Google Scholar

    [23]

    Tafuri F, Kirtley J R, Medaglia P G, Orgiani P, Balestrino G 2004 Phys. Rev. Lett. 92 157006Google Scholar

    [24]

    Luan L, Lippman T M, Hicks C W, Bert J A, Auslaender O M, Chu J H, Analytis J G, Fisher I R, Moler K A 2011 Phys. Rev. Lett. 106 067001Google Scholar

    [25]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291Google Scholar

    [26]

    Jeanneret B, Gavilano J L, Racine G A, Leemann C, Martinoli P 1989 Appl. Phys. Lett. 55 2336Google Scholar

    [27]

    Kinney J, Garcia-Barriocanal J, Goldman A M 2015 Phys. Rev. B 92 100505Google Scholar

    [28]

    Claassen J H, Wilson M L, Byers J M, Adrian S 1997 J. Appl. Phys. 82 3028Google Scholar

    [29]

    Turneaure S J, Pesetski A A, Lemberger T R 1998 J. Appl. Phys. 83 4334Google Scholar

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221Google Scholar

    [31]

    Fiory A T, Hebard A F, Mankiewich P M, Howard R E 1988 Appl. Phys. Lett. 52 2165Google Scholar

    [32]

    He X, Gozar A, Sundling R, Božović I 2016 Rev. Sci. Instrum. 87 113903Google Scholar

    [33]

    Dubuis G, He X, Božović I 2014 Rev. Sci. Instrum. 85 103902Google Scholar

    [34]

    Clem J R, Coffey M W 1992 Phys. Rev. B 46 14662Google Scholar

    [35]

    Lee J Y, Kim Y H, Hahn T S, Choi S S 1996 Appl. Phys. Lett. 69 1637Google Scholar

    [36]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902Google Scholar

    [37]

    丁世英 2009 物理学进展 29 239Google Scholar

    Ding S Y 2009 Progress in Physics 29 239Google Scholar

    [38]

    Kamlapure A, Mondal M, Chand M, Mishra A, Jesudasan J, Bagwe V, Benfatto L, Tripathi V, Raychaudhuri P 2010 Appl. Phys. Lett. 96 072509Google Scholar

    [39]

    Tinkham M 1996 Introduction to Superconductivity (2 nd Ed.) (New York: McGraw-Hill) p103

    [40]

    Kosterlitz J M, Thouless D J 1972 J. Phys. C: Solid. State. Phys. 5 L124Google Scholar

    [41]

    Nelson D R, Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201Google Scholar

    [42]

    Qin M Y, Zhang R Z, Feng Z P, Lin Z F, Wei X J, Alvarez S B, Dong C, Silhanek A V, Zhu B Y, Yuan J, Qin Q, Jin K 2020 J. Supercond. Novel Magn. 33 159Google Scholar

    [43]

    Draskovic J, Lemberger T R, Peters B, Yang F, Ku J, Bezryadin A, Wang S 2013 Phys. Rev. B 88 134516Google Scholar

    [44]

    Lemberger T R, Ahmed A 2013 Phys. Rev. B 87 214505Google Scholar

    [45]

    Claassen J H, Reeves M E, Soulen R J 1991 Rev. Sci. Instrum. 62 996

    [46]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [47]

    Logvenov G, Gozar A, Bozovic I 2009 Science 326 699Google Scholar

    [48]

    Nam H, Su P H, Shih C K 2018 Rev. Sci. Instrum. 89 043901Google Scholar

    [49]

    Zuev Y, Lemberger T R, Skinta J A, Greibe T, Naito M 2003 Phys. Status Solidi B 236 412Google Scholar

    [50]

    Cui Y T, Moore R G, Zhang A M, Tian Y, Lee J J, Schmitt F T, Zhang W H, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Wang L L, Ma X C, Zhang Q M, Xue Q K, Lee D H, Shen Z X 2015 Phys. Rev. Lett. 114 037002Google Scholar

    [51]

    Rout P K, Budhani R C 2010 Phys. Rev. B 82 024518Google Scholar

    [52]

    Kumar S, Kumar C, Jesudasan J, Bagwe V, Raychaudhuri P, Bose S 2013 Appl. Phys. Lett. 103 262601Google Scholar

  • 图 1  (a)双线圈互感装置示意图; (b)等效电路图

    Figure 1.  Schematic illustration (a) and equivalent circuit (b) of the two-coil mutual inductance apparatus.

    图 2  (a) d = 100 nm, λ = 150 nm的超导薄膜的互感系数随薄膜半径R的变化曲线; (b)基于不同的线圈间距(h = 0.9, 4.5, 9.0 mm) 得到的穿透深度计算值随薄膜半径R的变化曲线, 虚线代表实际穿透深度λ = 150 nm

    Figure 2.  (a) The mutual inductance as a function of film radii R calculated for the typical superconducting film with d = 100 nm, λ = 150 nm; (b) calculations of penetration depth λcal vs film radii R for different spacings between two coils (h = 0.9, 4.5, 9.0 mm). The real penetration depth (λ = 150 nm) is indicated by the dotted line.

    图 3  (a)两次测量同一片铌膜得到的感生电压Vx, 1(T)及Vx, 2(T); (b)铌膜的感生电压V(T = 4.5 K)随频率的依赖关系

    Figure 3.  (a) The induced voltage data Vx, 1(T) and Vx, 2(T) taken from the same Nb film with sample remounted; (b) the frequency dependence of induced voltage V(T = 4.5 K) for the Nb film.

    图 4  NbN薄膜(NbN#1, NbN#2, NbN#3, NbN#4)的双线圈互感测量结果 (a) NbN#1样品的感生电压曲线Vx(T)及Vy(T); (b)四个样品的穿透深度随温度变化曲线λ(T); (c) NbN#1样品的超流密度-温度曲线${{\rm{\lambda }}^{ - 2}}\left( T \right) \propto {n_{\rm{s}}}\left( T \right)$, 黑色实线是脏极限BCS理论的拟合结果; (d)四块样品的穿透深度零温外延值λ (T → 0)与Tc的关系, 符合文献报道趋势[38], 误差棒的长度小于数据点的标记尺寸

    Figure 4.  Two-coil mutual inductance measurement results of NbN films (NbN#1, NbN#2, NbN#3, NbN#4): (a) Temperature dependence of induced voltage Vx(T) and Vy(T) for NbN#1; (b) temperature-dependent penetration depth λ(T) of four NbN films; (c) temperature variation in superfluid density ${{\rm{\lambda }}^{ - 2}}\left( T \right) \propto {n_{\rm{s}}}\left( T \right)$ for NbN#1. The black line shows the dirty s-wave BCS theory fit to the data; (d) the value of λ (T → 0) for four NbN films, which shows a good agreement with the published value[38]. The length of error bar is shorter than the symbol size.

  • [1]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [2]

    London F, London H 1935 Proc. R. Soc. A 149 71Google Scholar

    [3]

    Prozorov R, Giannetta R W 2006 Supercond. Sci. Technol. 19 R41Google Scholar

    [4]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505Google Scholar

    [5]

    Hardy W N, Bonn D A, Morgan D C, Liang R, Zhang K 1993 Phys. Rev. Lett. 70 3999Google Scholar

    [6]

    Skinta J A, Kim M S, Lemberger T R, Greibe T, Naito M 2002 Phys. Rev. Lett. 88 207005Google Scholar

    [7]

    Fletcher J D, Carrington A, Taylor O J, Kazakov S M, Karpinski J 2005 Phys. Rev. Lett. 95 097005Google Scholar

    [8]

    Emery V J, Kivelson S A 1995 Nature 374 434Google Scholar

    [9]

    Božović I, He X, Wu J, Bollinger A T 2016 Nature 536 309Google Scholar

    [10]

    Homes C C, Dordevic S V, Strongin M, Bonn D A, Liang R, Hardy W N, Komiya S, Ando Y, Yu G, Kaneko N, Zhao X, Greven M, Basov D N, Timusk T 2004 Nature 430 539Google Scholar

    [11]

    Uemura Y J, Luke G M, Sternlieb B J, Brewer J H, Carolan J F, Hardy W N, Kadono R, Kempton J R, Kiefl R F, Kreitzman S R, Mulhern P, Riseman T M, Williams D L, Yang B X, Uchida S, Takagi H, Gopalakrishnan J, Sleight A W, Subramanian M A, Chien C L, Cieplak M Z, Xiao G, Lee V Y, Statt B W, Stronach C E, Kossler W J, Yu X H 1989 Phys. Rev. Lett. 62 2317Google Scholar

    [12]

    Hashimoto K, Cho K, Shibauchi T, Kasahara S, Mizukami Y, Katsumata R, Tsuruhara Y, Terashima T, Ikeda H, Tanatar M A, Kitano H, Salovich N, Giannetta R W, Walmsley P, Carrington A, Prozorov R, Matsuda Y 2012 Science 336 1554Google Scholar

    [13]

    Joshi K R, Nusran N M, Tanatar M A, Cho K, Bud’ko S L, Canfield P C, Fernandes R M, Levchenko A, Prozorov R 2019 arXiv: 1903.00053 [cond-mat.supr-con]

    [14]

    Wang C G, Li Z, Yang J, Xing L Y, Dai G Y, Wang X C, Jin C Q, Zhou R, Zheng G Q 2018 Phys. Rev. Lett. 121 167004Google Scholar

    [15]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar

    [16]

    Hashimoto K, Shibauchi T, Kasahara S, Ikada K, Tonegawa S, Kato T, Okazaki R, van der Beek C J, Konczykowski M, Takeya H, Hirata K, Terashima T, Matsuda Y 2009 Phys. Rev. Lett. 102 207001Google Scholar

    [17]

    Hashimoto K, Shibauchi T, Kato T, Ikada K, Okazaki R, Shishido H, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Matsuda Y 2009 Phys. Rev. Lett. 102 017002Google Scholar

    [18]

    Pang G, Smidman M, Zhang J, Jiao L, Weng Z, Nica E M, Chen Y, Jiang W, Zhang Y, Xie W, Jeevan H S, Lee H, Gegenwart P, Steglich F, Si Q, Yuan H 2018 Proc. Natl. Acad. Sci. U.S.A. 115 5343Google Scholar

    [19]

    Van Degrift C T 1975 Rev. Sci. Instrum. 46 599Google Scholar

    [20]

    Weng Z F, Zhang J L, Smidman M, Shang T, Quintanilla J, Annett J F, Nicklas M, Pang G M, Jiao L, Jiang W B, Chen Y, Steglich F, Yuan H Q 2016 Phys. Rev. Lett. 117 027001Google Scholar

    [21]

    Okazaki R, Konczykowski M, van der Beek C J, Kato T, Hashimoto K, Shimozawa M, Shishido H, Yamashita M, Ishikado M, Kito H, Iyo A, Eisaki H, Shamoto S, Shibauchi T, Matsuda Y 2009 Phys. Rev. B 79 064520Google Scholar

    [22]

    Ren C, Wang Z S, Luo H Q, Yang H, Shan L, Wen H H 2008 Phys. Rev. Lett. 101 257006Google Scholar

    [23]

    Tafuri F, Kirtley J R, Medaglia P G, Orgiani P, Balestrino G 2004 Phys. Rev. Lett. 92 157006Google Scholar

    [24]

    Luan L, Lippman T M, Hicks C W, Bert J A, Auslaender O M, Chu J H, Analytis J G, Fisher I R, Moler K A 2011 Phys. Rev. Lett. 106 067001Google Scholar

    [25]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291Google Scholar

    [26]

    Jeanneret B, Gavilano J L, Racine G A, Leemann C, Martinoli P 1989 Appl. Phys. Lett. 55 2336Google Scholar

    [27]

    Kinney J, Garcia-Barriocanal J, Goldman A M 2015 Phys. Rev. B 92 100505Google Scholar

    [28]

    Claassen J H, Wilson M L, Byers J M, Adrian S 1997 J. Appl. Phys. 82 3028Google Scholar

    [29]

    Turneaure S J, Pesetski A A, Lemberger T R 1998 J. Appl. Phys. 83 4334Google Scholar

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221Google Scholar

    [31]

    Fiory A T, Hebard A F, Mankiewich P M, Howard R E 1988 Appl. Phys. Lett. 52 2165Google Scholar

    [32]

    He X, Gozar A, Sundling R, Božović I 2016 Rev. Sci. Instrum. 87 113903Google Scholar

    [33]

    Dubuis G, He X, Božović I 2014 Rev. Sci. Instrum. 85 103902Google Scholar

    [34]

    Clem J R, Coffey M W 1992 Phys. Rev. B 46 14662Google Scholar

    [35]

    Lee J Y, Kim Y H, Hahn T S, Choi S S 1996 Appl. Phys. Lett. 69 1637Google Scholar

    [36]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902Google Scholar

    [37]

    丁世英 2009 物理学进展 29 239Google Scholar

    Ding S Y 2009 Progress in Physics 29 239Google Scholar

    [38]

    Kamlapure A, Mondal M, Chand M, Mishra A, Jesudasan J, Bagwe V, Benfatto L, Tripathi V, Raychaudhuri P 2010 Appl. Phys. Lett. 96 072509Google Scholar

    [39]

    Tinkham M 1996 Introduction to Superconductivity (2 nd Ed.) (New York: McGraw-Hill) p103

    [40]

    Kosterlitz J M, Thouless D J 1972 J. Phys. C: Solid. State. Phys. 5 L124Google Scholar

    [41]

    Nelson D R, Kosterlitz J M 1977 Phys. Rev. Lett. 39 1201Google Scholar

    [42]

    Qin M Y, Zhang R Z, Feng Z P, Lin Z F, Wei X J, Alvarez S B, Dong C, Silhanek A V, Zhu B Y, Yuan J, Qin Q, Jin K 2020 J. Supercond. Novel Magn. 33 159Google Scholar

    [43]

    Draskovic J, Lemberger T R, Peters B, Yang F, Ku J, Bezryadin A, Wang S 2013 Phys. Rev. B 88 134516Google Scholar

    [44]

    Lemberger T R, Ahmed A 2013 Phys. Rev. B 87 214505Google Scholar

    [45]

    Claassen J H, Reeves M E, Soulen R J 1991 Rev. Sci. Instrum. 62 996

    [46]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [47]

    Logvenov G, Gozar A, Bozovic I 2009 Science 326 699Google Scholar

    [48]

    Nam H, Su P H, Shih C K 2018 Rev. Sci. Instrum. 89 043901Google Scholar

    [49]

    Zuev Y, Lemberger T R, Skinta J A, Greibe T, Naito M 2003 Phys. Status Solidi B 236 412Google Scholar

    [50]

    Cui Y T, Moore R G, Zhang A M, Tian Y, Lee J J, Schmitt F T, Zhang W H, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Wang L L, Ma X C, Zhang Q M, Xue Q K, Lee D H, Shen Z X 2015 Phys. Rev. Lett. 114 037002Google Scholar

    [51]

    Rout P K, Budhani R C 2010 Phys. Rev. B 82 024518Google Scholar

    [52]

    Kumar S, Kumar C, Jesudasan J, Bagwe V, Raychaudhuri P, Bose S 2013 Appl. Phys. Lett. 103 262601Google Scholar

  • [1] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [2] Lou Yue-Shen, Guo Wen-Jun. Prediction of unknown nuclear stability by Bayesian deep neural network. Acta Physica Sinica, 2022, 71(10): 102101. doi: 10.7498/aps.71.20212387
    [3] Han Bo, Liang Ya-Qiong. Measurement of magnetic field of capacitor-coil target using proton radiography. Acta Physica Sinica, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [4] Wu Xiao-Yu, Zhao Hu, Li Zhi. Superconducting-circuit based Aulter-Towns splitting effect. Acta Physica Sinica, 2020, 69(23): 230302. doi: 10.7498/aps.69.20200796
    [5] Ding Fa-Zhu, Zhang Jing-Ye, Tan Yun-Fei, Chen Zhi-You, Dong Ze-Bin, Zhang Hui-Liang, Shang Hong-Jing, Xu Wen-Juan, Zhang He, Qu Fei, Gao Zhao-Shun, Zhou Wei-Wei, Gu Hong-Wei. Development of a 4 T (46 K) 100 mm high-temperature superconducting coil made of homemade MOCVD-YBCO coated conductors. Acta Physica Sinica, 2018, 67(6): 068401. doi: 10.7498/aps.67.20171491
    [6] Chen Chuan-Ting, Yao Gang, Duan Ming-Chao, Guan Dan-Dan, Li Yao-Yi, Zheng Hao, Wang Shi-Yong, Liu Can-Hua, Jia Jin-Feng. In-situ measurement of diamagnetic response of potassium-adsorbed multi-layer FeSe ultrathin films on SrTiO3(001) substrate. Acta Physica Sinica, 2018, 67(22): 227401. doi: 10.7498/aps.67.20181522
    [7] Yang Zhuo-Qun, Wu Ya-Bo, Lu Jun-Wang, Zhang Cheng-Yuan, Zhang Xue. Coherence length and magnetic penetration depth of the s-wave holographic superconductor model in Lifshitz spacetime. Acta Physica Sinica, 2016, 65(4): 040401. doi: 10.7498/aps.65.040401
    [8] Han Yun, Chung Sheng-Luen, Yeh Jeng-Sheng, Chen Qi-Jun. Calibration of D-RGB camera networks by skeleton-based viewpoint invariance transformation. Acta Physica Sinica, 2014, 63(7): 074211. doi: 10.7498/aps.63.074211
    [9] Li Lan-Kai, Wang Hou-Sheng, Ni Zhi-Peng, Cheng Jun-Sheng, Wang Qiu-Liang. Mechanical stress in superconducting coils during winding process. Acta Physica Sinica, 2013, 62(5): 058403. doi: 10.7498/aps.62.058403
    [10] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [11] Guo Zhi-Chao, Suo Hong-Li. The enhancement of current in superconductor wires by modifying and changing the surface region microstructure. Acta Physica Sinica, 2012, 61(23): 237106. doi: 10.7498/aps.61.237106
    [12] Yu Li-Hua, Dong Shi-Run, Xu Jun-Hua, Li Ge-Yang. Superhardness effect of TaN/TiN and NbN/TiN nanostructure multilayers and its mechanism. Acta Physica Sinica, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [13] Zhang Quan-Yi, Wu Yao-Yu, Peng Zheng, Liu Rui, Lu Kun-Quan, Hou Mei-Ying. The sinking depth of a projectile in granular media under gravity. Acta Physica Sinica, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
    [14] Wang Rui-Feng. The dynamical mechanism of A-B effect and its testing scheme. Acta Physica Sinica, 2005, 54(10): 4532-4537. doi: 10.7498/aps.54.4532
    [15] Wang Rui-Feng, Zhao Shi-Peng, Xu Feng-Zhi, Chen Gang-Hua, Yang Han-Sheng. . Acta Physica Sinica, 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [16] LIU GONG-QIANG, CHEN S.TSAI. MAGNETOOPTIC EFFECTS AND PROPERTIES OF MAGNETOSTATIC WAVE PROPAGATION IN YIG-GGG WAVEGUIDE UNDER INCLINED BIAS MAGNETIC FIELD. Acta Physica Sinica, 1998, 47(6): 997-1005. doi: 10.7498/aps.47.997
    [17] WU HANG-SHENG. CRITICAL MAGNETIC FIELD OF A SUPERCONDUCTING ALLOY FILM. Acta Physica Sinica, 1965, 21(1): 132-139. doi: 10.7498/aps.21.132
    [18] LEI HSIAO-LIN. SUPERCONDUCTING FILMS IN A MAGNETIC FIELD. Acta Physica Sinica, 1965, 21(9): 1619-1637. doi: 10.7498/aps.21.1619
    [19] TEOPиЯ CBEPXлPOBOдиMOCTи TOHKOй METAллиЧECKOй лдЁHKи B CилbHOM MAГHиTHOM лOЛE (I). Acta Physica Sinica, 1964, 20(9): 873-889. doi: 10.7498/aps.20.873
    [20] TEOPия CBEPXпPOBOдиMOCTи TOHKOй METAлличECKOй nлЁHKи B CилbHOM MAГHUTHOM лOлE (II)——КpиTичECKOE MAГHиTHOE лOЛE CBEPXлPOBOлящEй ГцлЁKи. Acta Physica Sinica, 1964, 20(10): 991-1002. doi: 10.7498/aps.20.991
Metrics
  • Abstract views:  13060
  • PDF Downloads:  362
  • Cited By: 0
Publishing process
  • Received Date:  17 November 2019
  • Accepted Date:  10 December 2019
  • Published Online:  20 February 2020

/

返回文章
返回