Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique

Shen Yong-Qing Zhang Zhi-Qiang Liao Bin Wu Xian-Ying Zhang Xu Hua Qing-Song Bao Man-Yu

Citation:

Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique

Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu
PDF
HTML
Get Citation
  • Nitrogen-doped diamond like carbon film is promising in biological applications, studying the synergistic tribocorrosion performance is indispensable. In this paper, Nitrogen-doped diamond like carbon films were deposited on AISI 304L austenitic stainless steels and Si substrate by using the high power impulse magnetron sputtering technique using Ar and N2 as precursors at room temperature. The effect of target pulse duration on the structure, mechanical properties, corrosion resistance and tribocorrosion properties in Hank's equilibrium salt solution and the corresponding mechanism were studied. The results of scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and nano-hardness test showed that the nitrogen-doped diamond like carbon coatings prepared at a target pulse duration of 60 μs showed the sp3 bonding content of 33.9% with the hardness of 12.4 GPaand the root mean square roughness of 0.63 nm. With the increase in pulse duration to 90 μs, the sp2 bonding increased, meanwhile the surface roughness increased. The results of potentiodynamic polarization indicated that the Nitrogen-doped diamond like carbon coating prepared at 60μs had best corrosion resistance with the corrosion current density of 7.65 × 10–8 A·cm–2. The effect of the target pulse duration on tribocorrosionbehaviour of the Nitrogen-doped diamond like carboncoating was investigated in Hank’s solution by a reciprocating tribometer equipped with a three-electrode electrochemical cell.The coatings at 60 μs exhibited excellent tribocorrosion properties with high open circuit potential of 39 mV, low COF of 0.05 without pitting corrosion due to high corrosionresistance, low contact angel and dense microstructure.The results indicated that corrosion can be accelerated by friction, but it also affect the mechanical properties of the Nitrogen-doped diamond like carbon coatings. The increase in pulse duration to 90 μs, leading to the reduction of sp3 bonds which can form a cross-linking structure. The degraded cross-linking structure decreased the corrosion resistance of the coating via the increased porosity in the coating, which weakened the interfacial strength of the coating, and ultimately led to failure of the coatingunder the action of wear.
      Corresponding author: Zhang Xu, zhangxu@bnu.edu.cn
    [1]

    Tyagi A, Walia R S, Murtaza Q, Pandey S M, Bajaj B 2019 Int. J. Refract. Met. Hard Mater. 78 107Google Scholar

    [2]

    Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q 2017 Surf. Coat. Technol. 332 120Google Scholar

    [3]

    Son M J, Zhang T F, Jo Y J, Kim K H 2017 Surf. Coat. Technol. 329 77Google Scholar

    [4]

    Wang C, Yang S, Zhang J 2008 J. Non. Cryst. Solids 354 1608Google Scholar

    [5]

    Muhl S, Mendez J M 1999 Diam. Relat. Mater. 8 1809Google Scholar

    [6]

    Zheng C L, Cui F Z, Meng B, Ge J, Liu D P, Lee I S 2005 Surf. Coat. Technol. 193 361Google Scholar

    [7]

    Dress D, Celis J P, Dekempeneer E, Meneve J 1996 Surf. Coat. Technol. 85-86 575

    [8]

    Ronkainen H, Varjus S, Holmberg K 1998 Wear 222 120Google Scholar

    [9]

    Park S J, Lee K R, Ahn S H, Kim J G 2008 Diam. Relat. Mater. 17 247Google Scholar

    [10]

    Ohana T, Nakamura T, Suzuki M, Tanaka A, Koga Y 2004 Diam. Relat. Mater. 13 1500Google Scholar

    [11]

    Lü Y, Li J, Liu X, Li H, Zhou H, Chen J 2012 Appl. Surf. Sci. 258 3864Google Scholar

    [12]

    Cheng H C, Chiou S Y, Liu C M, Lin M H, Chen C C, Ou K L 2009 J. Alloy. Compd. 477 931Google Scholar

    [13]

    Kim D H, Kim H E, Lee K R, Whang C N, Lee I S 2002 Mater. Sci. Eng. C 22 9Google Scholar

    [14]

    Manhabosco T M, Müller I L 2009 Tribol. Lett. 33 193Google Scholar

    [15]

    Azzi M, Paquette M, Szpunar J A, Klemberg-Sapieha J E, Martinu L 2009 Wear 267 860Google Scholar

    [16]

    Sharifahmadian O, Mahboubi F 2019 Ceram. Int. 45 16424Google Scholar

    [17]

    Guerino M, Massi M, Maciel H S 2003 Microelectronic. J. 34 639Google Scholar

    [18]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284Google Scholar

    [19]

    Ricard A, Nouvellon C, Konstantinidis S, Dauchot J, Wautelet M, Hecq M 2002 J. Vac. Sci. Technol. A 20 1488Google Scholar

    [20]

    Christou C, Barber Z H 2000 J. Vac. Sci. Technol. A 18 2897Google Scholar

    [21]

    Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [22]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [23]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys 42 015304Google Scholar

    [24]

    Wu Z R, Zhang M, Cui F Z 2007 Surf. Coat. Technol. 201 5710Google Scholar

    [25]

    Bouchetfabre B, Lazar G, Ballutaud D, Godet C, Zellama K 2008 Diam. Relat. Mater. 17 700Google Scholar

    [26]

    Ujvári T, Szikora B, Tóth A, Mohai M, Bertóti I 2002 Diam. Relat. Mater. 11 1200

    [27]

    Gago R, Jiménez I, Cáceres D, Agulló-Rueda F, Sajavara T, Albella J M, Climent-Font A, Vergara I, Räisänen J, Raühala E 2001 Chem. Mater. 13 129Google Scholar

    [28]

    Ferrari A, Rodil S, Robertson J 2003 Phys. Rev. B 67 155306Google Scholar

    [29]

    Wei S, Shao T, Peng D 2010 Diam. Relat. Mater. 19 648Google Scholar

    [30]

    Niu L F, Zhang S J, Li D J, Zhang J K, Yang S G, Tian Z, Huang Z G, Zhang H L J 2001 Adhes. Sci. Technol. 15 1121Google Scholar

    [31]

    Matthews A, Franklin S, Holmberg K 2007 J. Phys. D. Appl. Phys. 40 5463Google Scholar

    [32]

    Philippon D, Godinho V, Nagy P M, Delplancke-Ogletree M P, Fernández A 2011 Wear 270 541

    [33]

    Beake B D, Vishnyakov V M, Valizadeh R, Colligon J S 2006 J. Phys. D: Appl. Phys. 39 1392Google Scholar

    [34]

    Ou Y X, Chen H, Li Z Y, Lin J, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar

    [35]

    Martini E M A, Muller I L 2000 Corros. Sci. 42 443Google Scholar

    [36]

    Parfenov E V, Yerokhin A L, Matthews A 2007 Thin Solid Films 516 428Google Scholar

    [37]

    Matthes B, Broszeit E, Aromaa J, Ronkainen H, Hannula SP, Leyland A, Matthews A 1991 Surf. Coat. Technol. 49 489Google Scholar

    [38]

    Pu J, Wang J, He D, Wan S 2016 Surf. Interface Anal. 48 360Google Scholar

    [39]

    Stansbury E E, Buchanan R A 1981 ASM International (USA: Materials Park, OH) p55

    [40]

    Písařík P, Mikšovský J, Remsa J, Zemek J, Tolde Z, Jelínek M 2018 Appl. Phys. A 124 85

    [41]

    Wang Y, Wang L, Wang S C, Zhang G, Wood R J K, Xue Q 2010 Tribol. Lett. 40 301Google Scholar

  • 图 1  不同脉冲持续时间制备薄膜的横截面SEM图片 (a) 30 μs; (b) 60 μs; (c) 90 μs

    Figure 1.  Cross-sectional SEM images of the films deposited at different pulse durations: (a) 30 μs; (b) 60 μs; (c) 90 μs.

    图 2  不同脉冲持续时间制备薄膜的3D AFM形貌 (a) 30 μs; (b) 60 μs; (c) 90 μs

    Figure 2.  AFM surface micrographs of the N-DLC films deposited at different pulse durations: (a) 30 μs; (b) 60 μs; (c) 90 μs.

    图 3  在不同脉冲持续时间制备的掺氮类金刚石薄膜的XPS C1s和N1s的拟合光谱 (a), (b) 30 μs; (c), (d) 60 μs; (e), (f) 90 μs

    Figure 3.  XPS C1s and N1s spectra of the N-DLC films deposited at different pulse durations: (a), (b) 30 μs; (c), (d) 60 μs; (e), (f) 90 μs

    图 4  在不同靶脉冲持续时间制备的N-DLC薄膜的XPS C1s光谱的拟合结果

    Figure 4.  The fitting result of the C1s spectra of the N-DLC films deposited at different pulse durations.

    图 5  不同脉冲持续时间制备薄膜的机械性能 (a) 纳米硬度和弹性模量; (b) H/E *H 3/E *2

    Figure 5.  Mechanical properties of the N-DLC films deposited at different pulse durations: (a) Hardness and elasticity modulus; (b) H/E * and H 3/E *2.

    图 6  N-DLC膜和不锈钢衬底浸入Hank’s平衡盐混合溶液中的动电位极化曲线

    Figure 6.  Potentiodynamic polarization curves of the N-DLC films and substrate immersed in Hank’s solution.

    图 7  (a)摩擦腐蚀试验的电解池结构图示意图; (b)摩蚀测试中按OCP进程操作顺序

    Figure 7.  (a) The structure diagram of electrolytic cells used for tribocorrosion tests; (b) sequence of operations during the tribocorrosion test illustrated by the OCP evolution.

    图 8  (a)—(c)磨蚀实验中OCP和摩擦系数随着滑行时间的变化以及磨痕的光学图片; (d)摩擦实验中90 μs制备膜的摩擦系数和磨痕图

    Figure 8.  (a)–(c) The changes of OCP and coefficient of friction as a function of sliding times and the inserted optical micrographs of tribocorrosion tracks for coatings; (d) the normal coefficient of friction and micrographs of wear tracks.

    图 9  不同靶脉冲持续时间下制备的N-DLC薄膜在去离子水(a)—(c)和Hank’s溶液(d)—(f) 滴到表面中的接触角形貌 (a), (d) 30 μs; (b), (e) 60 μs; (c), (f) 90 μs

    Figure 9.  The contact angle of films: the morphologies of deionized water (a)–(c) and Hank’s solution (d)–(f) droplets on the surfaces: (a), (d) 30 μs: (b), (e) 60 μs: (c), (f) 90 μs.

    表 1  不锈钢衬底和N-DLC膜的动电位极化曲线的拟合结果

    Table 1.  The fitting results of the potentiodynamic polarization curves of the N-DLC films and substrate.

    样品Ecorr/Vicorr/A·cm–2ba/mVbc/mVRp/Ω·cm2P
    304 L–0.311.69 × 10–6323.47117.752.21 × 107
    30 μs–0.159.87 × 10–8289.51119.613.72 × 1080.042
    60 μs–0.137.65 × 10–8408.84113.725.05 × 1080.026
    90 μs–0.121.55 × 10–7298.2482.912.05 × 1080.079
    DownLoad: CSV
  • [1]

    Tyagi A, Walia R S, Murtaza Q, Pandey S M, Bajaj B 2019 Int. J. Refract. Met. Hard Mater. 78 107Google Scholar

    [2]

    Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q 2017 Surf. Coat. Technol. 332 120Google Scholar

    [3]

    Son M J, Zhang T F, Jo Y J, Kim K H 2017 Surf. Coat. Technol. 329 77Google Scholar

    [4]

    Wang C, Yang S, Zhang J 2008 J. Non. Cryst. Solids 354 1608Google Scholar

    [5]

    Muhl S, Mendez J M 1999 Diam. Relat. Mater. 8 1809Google Scholar

    [6]

    Zheng C L, Cui F Z, Meng B, Ge J, Liu D P, Lee I S 2005 Surf. Coat. Technol. 193 361Google Scholar

    [7]

    Dress D, Celis J P, Dekempeneer E, Meneve J 1996 Surf. Coat. Technol. 85-86 575

    [8]

    Ronkainen H, Varjus S, Holmberg K 1998 Wear 222 120Google Scholar

    [9]

    Park S J, Lee K R, Ahn S H, Kim J G 2008 Diam. Relat. Mater. 17 247Google Scholar

    [10]

    Ohana T, Nakamura T, Suzuki M, Tanaka A, Koga Y 2004 Diam. Relat. Mater. 13 1500Google Scholar

    [11]

    Lü Y, Li J, Liu X, Li H, Zhou H, Chen J 2012 Appl. Surf. Sci. 258 3864Google Scholar

    [12]

    Cheng H C, Chiou S Y, Liu C M, Lin M H, Chen C C, Ou K L 2009 J. Alloy. Compd. 477 931Google Scholar

    [13]

    Kim D H, Kim H E, Lee K R, Whang C N, Lee I S 2002 Mater. Sci. Eng. C 22 9Google Scholar

    [14]

    Manhabosco T M, Müller I L 2009 Tribol. Lett. 33 193Google Scholar

    [15]

    Azzi M, Paquette M, Szpunar J A, Klemberg-Sapieha J E, Martinu L 2009 Wear 267 860Google Scholar

    [16]

    Sharifahmadian O, Mahboubi F 2019 Ceram. Int. 45 16424Google Scholar

    [17]

    Guerino M, Massi M, Maciel H S 2003 Microelectronic. J. 34 639Google Scholar

    [18]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284Google Scholar

    [19]

    Ricard A, Nouvellon C, Konstantinidis S, Dauchot J, Wautelet M, Hecq M 2002 J. Vac. Sci. Technol. A 20 1488Google Scholar

    [20]

    Christou C, Barber Z H 2000 J. Vac. Sci. Technol. A 18 2897Google Scholar

    [21]

    Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [22]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [23]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys 42 015304Google Scholar

    [24]

    Wu Z R, Zhang M, Cui F Z 2007 Surf. Coat. Technol. 201 5710Google Scholar

    [25]

    Bouchetfabre B, Lazar G, Ballutaud D, Godet C, Zellama K 2008 Diam. Relat. Mater. 17 700Google Scholar

    [26]

    Ujvári T, Szikora B, Tóth A, Mohai M, Bertóti I 2002 Diam. Relat. Mater. 11 1200

    [27]

    Gago R, Jiménez I, Cáceres D, Agulló-Rueda F, Sajavara T, Albella J M, Climent-Font A, Vergara I, Räisänen J, Raühala E 2001 Chem. Mater. 13 129Google Scholar

    [28]

    Ferrari A, Rodil S, Robertson J 2003 Phys. Rev. B 67 155306Google Scholar

    [29]

    Wei S, Shao T, Peng D 2010 Diam. Relat. Mater. 19 648Google Scholar

    [30]

    Niu L F, Zhang S J, Li D J, Zhang J K, Yang S G, Tian Z, Huang Z G, Zhang H L J 2001 Adhes. Sci. Technol. 15 1121Google Scholar

    [31]

    Matthews A, Franklin S, Holmberg K 2007 J. Phys. D. Appl. Phys. 40 5463Google Scholar

    [32]

    Philippon D, Godinho V, Nagy P M, Delplancke-Ogletree M P, Fernández A 2011 Wear 270 541

    [33]

    Beake B D, Vishnyakov V M, Valizadeh R, Colligon J S 2006 J. Phys. D: Appl. Phys. 39 1392Google Scholar

    [34]

    Ou Y X, Chen H, Li Z Y, Lin J, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar

    [35]

    Martini E M A, Muller I L 2000 Corros. Sci. 42 443Google Scholar

    [36]

    Parfenov E V, Yerokhin A L, Matthews A 2007 Thin Solid Films 516 428Google Scholar

    [37]

    Matthes B, Broszeit E, Aromaa J, Ronkainen H, Hannula SP, Leyland A, Matthews A 1991 Surf. Coat. Technol. 49 489Google Scholar

    [38]

    Pu J, Wang J, He D, Wan S 2016 Surf. Interface Anal. 48 360Google Scholar

    [39]

    Stansbury E E, Buchanan R A 1981 ASM International (USA: Materials Park, OH) p55

    [40]

    Písařík P, Mikšovský J, Remsa J, Zemek J, Tolde Z, Jelínek M 2018 Appl. Phys. A 124 85

    [41]

    Wang Y, Wang L, Wang S C, Zhang G, Wood R J K, Xue Q 2010 Tribol. Lett. 40 301Google Scholar

  • [1] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen. Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode. Acta Physica Sinica, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [3] Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang. Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target. Acta Physica Sinica, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] Chen Shu-Nian, Liao Bin, Chen Lin, Zhang Zhi-Qiang, Shen Yong-Qing, Wang Hao-Qi, Pang Pan, Wu Xian-Ying, Hua Qing-Song, He Guang-Yu. Corrosion and tribological properties of TiAlCN/TiAlN/TiAlcomposite system deposited by magneticfliter cathode vacuum arctechnique. Acta Physica Sinica, 2020, 69(10): 107202. doi: 10.7498/aps.69.20200012
    [5] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [6] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [7] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [8] Meng Xian-Cai, Zuo Gui-Zhong, Ren Jun, Sun Zhen, Xu Wei, Huang Ming, Li Mei-Heng, Deng Hui-Qiu, Hu Jian-Sheng, Hu Wang-Yu. Study of erosion and deposition characteristics of Li during liquid Li limiter experiment in HT-7. Acta Physica Sinica, 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [9] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [10] Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng. Phasic discharge characteristics in high power pulsed magnetron sputtering. Acta Physica Sinica, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [11] Wang Pei-Jun, Jiang Mei-Fu, Du Ji-Long, Dai Yong-Feng. Frictional properties of fluorinated diamond-like carbon films prepared by radio frequency reactive magnetron sputtering. Acta Physica Sinica, 2010, 59(12): 8920-8926. doi: 10.7498/aps.59.8920
    [12] Liu Gui-Li, Fang Ge-Liang. The electronic theory of the mechanism of the role of Sc in Al-Zn-Mg-Cu ultra high strength aluminium alloys. Acta Physica Sinica, 2009, 58(7): 4872-4877. doi: 10.7498/aps.58.4872
    [13] Liu Gui-Li. Electronic theoretical study on the corrosion and passivation mechanism of Ti metal. Acta Physica Sinica, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
    [14] Xiao Jian-Rong, Xu Hui, Guo Ai-Min, Wang Huan-You. Study on FN-DLC thin films: (Ⅱ) effect of radio frequency power on the optical band gap of the thin films. Acta Physica Sinica, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [15] Niu Yan-Xiong, Huang Feng, Duan Xiao-Feng, Wang Yue-Feng, Zhang Peng, He Chen-Juan, Yu Ye, Yao Jian-Quan. Thermal shock effect on diamond-like carbon thin films induced by pulsed-laser. Acta Physica Sinica, 2005, 54(10): 4816-4821. doi: 10.7498/aps.54.4816
    [16] Li Hong-Xuan, Xu Tao, Chen Jian-Min, Zhou Hui-Di, Liu Hui-Wen. Effect of RF power on the structure and properties of diamond-like carbon films. Acta Physica Sinica, 2005, 54(4): 1885-1889. doi: 10.7498/aps.54.1885
    [17] Yang Wu-Bao, Fan Song-Hua, Zhang Gu-Ling, Ma Pei-Ning, Zhang Shou-Zhong, Du Jian. Investigation of diamond-like-carbon films prepared by unbalanced magnetron sputtering. Acta Physica Sinica, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [18] Jiang Mei-Fu, Ning Zhao-Yuan. XPS study of fluorinated diamond-like carbon films prepared by reactive magnetron sputtering. Acta Physica Sinica, 2004, 53(9): 3220-3224. doi: 10.7498/aps.53.3220
    [19] Zhang Gu-Ling, Wang Jiu-Li, Yang Wu-Bao, Fan Song-Hua, Liu Chi-Zi, Yang Si-Ze. TiN coating for inner surface modification by grid enhanced plasma source ion im plantation. Acta Physica Sinica, 2003, 52(9): 2213-2218. doi: 10.7498/aps.52.2213
    [20] GU CHANG-ZHI, JIN ZENG-SUN, Lü XIAN-YI, ZOU GUANG-TIAN, ZHANG JI-FA, FANG RONG-CHUAN. STUDY OF THE DIAMOND FILMS WITH HIGH THERMAL CONDUCTIVITY. Acta Physica Sinica, 1997, 46(10): 1984-1989. doi: 10.7498/aps.46.1984
Metrics
  • Abstract views:  10753
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2020
  • Accepted Date:  14 February 2020
  • Published Online:  20 May 2020

/

返回文章
返回