搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁过滤技术TiAlCN/TiAlN/TiAl复合体系腐蚀及摩擦学性能

陈淑年 廖斌 陈琳 张志强 沈永青 王浩琦 庞盼 吴先映 华青松 何光宇

引用本文:
Citation:

基于磁过滤技术TiAlCN/TiAlN/TiAl复合体系腐蚀及摩擦学性能

陈淑年, 廖斌, 陈琳, 张志强, 沈永青, 王浩琦, 庞盼, 吴先映, 华青松, 何光宇

Corrosion and tribological properties of TiAlCN/TiAlN/TiAlcomposite system deposited by magneticfliter cathode vacuum arctechnique

Chen Shu-Nian, Liao Bin, Chen Lin, Zhang Zhi-Qiang, Shen Yong-Qing, Wang Hao-Qi, Pang Pan, Wu Xian-Ying, Hua Qing-Song, He Guang-Yu
PDF
HTML
导出引用
  • 本文基于新型的磁过滤沉积技术(FCVA)研究了TiAlCN/TiAlN/TiAl多元复合涂层结构及不同C含量对其防腐耐磨性能的影响. 同时使用SEM, XRD, XPS, 电化学测试和摩擦磨损设备对其宏/微观性能进行了系统表征. 实验结果表明: 随C含量增加, C元素的存在形式从TiAlCN固溶相转化为TiAlCN固溶/非晶碳共存. 典型的TiAlCN固溶/非晶碳纳米复合结构TiAlCN/TiAlN/TiAl涂层不仅具有超高硬度和高韧性, 而且涂层中均匀无特征结构的非晶碳具有优异的自润滑效果, 通过结合各层的优势, 该结构涂层在3.5%NaCl电化学腐蚀试验中, Ecorr提高了5.6倍, 为0.271V, Icorr降低为原来的1/52, 为8.092 × 10–9 A·cm–2; 在干摩擦实验中, 摩擦系数降低了1/3, 为0.43, 磨损率降低了1/1.4, 为1.13 × 10–5 mm3·N–1·m–1.
    The experiment is based on novel magnetic filtered cathodic vacuum arc (FCVA) technology, the effects of the structure and C contents of TiAlCN/TiAlN/TiAl composite coating on anticorrosion and wear resistance were studied. The macro/micro properties of the coatings were systematically characterized by SEM, XRD, XPS, electrochemical tests and friction equipment. The results show that, with the increase of C content,the form of C element in the coatings transforms from the TiAlCN solid solution to the coexistence of crystallized TiAlCN/amorphous carbon. The TiAlCN/TiAlN/TiAl coating with TiAlCNcrystallized/amorphous carbon nanocomposite structure demonstrated excellent performanceby combining the advantages of each layer, which the hardness reaches an ultrahigh leveland the amorphous carbonwith excellent self-lubricating effect exists in the coating structure. In 3.5% NaCl electrochemical corrosion test, Ecorr increased by 5.6 times to 0.271 V, Icorr decreased by 1/52 to 8.092 ×10–9 A·cm–2. During the dry sliding, friction coefficient decreased by 1/3 to 0.43, and wear rate decreased by 1/1.4 to 1.13×10–5 mm3·N–1·m–1.
      通信作者: 廖斌, liaobingz@bnu.edu.cn
    • 基金项目: 国家级-国家科技重点实验室基金(614220207011802)
      Corresponding author: Liao Bin, liaobingz@bnu.edu.cn
    [1]

    王均涛, 刘平, 李伟, 郑康培 2010 热加工工艺 20 104Google Scholar

    Wang J T, Liu P, Li W, Zheng K P 2010 Hot Working Technology 20 104Google Scholar

    [2]

    PalDey S, Deevi S C 2003 Sci. Eng. A 342 58Google Scholar

    [3]

    Hsu C H, Lee C Y, Lee C C 2009 Thin Solid Films 17 5212

    [4]

    Brogren M, Harding G L, Karmhag R, Ribbing C G, Niklasson G A, Stenmark L 2000 Thin Solid Films 370 268Google Scholar

    [5]

    Hovsepian PEh, Münz W D, Medlock A, Gregory G 2000 Surf. Coat. Technol. 133–134 508

    [6]

    Warcholinski B, Gilewicz A 2011 Wear 271 2812Google Scholar

    [7]

    Zheng J Y, Hao J Y, Li u X, Gong Q Y, Liu W M 2012 Surf. Coat. Technol. 209 110Google Scholar

    [8]

    Agudelo L C, Ospina R, Castillo H A, Devia A 2008 Phys. Scr. T131 014006Google Scholar

    [9]

    Kamath G, Ehiasarian A P, Purandare Y, Hovsepian PEh 2011 Surf. Coat. Technol. 205 2823Google Scholar

    [10]

    Hovsepian PEh, Ehiasarian A P, Deeming A, Schimpf C 2008 Vacuum 82 1312Google Scholar

    [11]

    Yang L J, Zhang Z H, Dang X A, Li L 2014 Mater. Sci. Forum 789 449Google Scholar

    [12]

    AL-Bukhaiti M A, Al-hatab K A, Tillmann W, Hoffmann F, Sprute T 2014 Appl. Surf. Sci. 318 180Google Scholar

    [13]

    Kawata K, Sugimura H, Takai O 2001 Thin Solid Films 390 64Google Scholar

    [14]

    单磊, 王永欣, 李金龙 2013 中国表面工程 26 86Google Scholar

    Shan L, Wang Y X, Li J L 2013 China Surface Engineering 26 86Google Scholar

    [15]

    Kuptsov K A, Kiryukhantsev-Korneev P V, Sheveryko A N, ShtanskyDV 2013 Surf. Coat. Technol. 216 273Google Scholar

    [16]

    李刘合, 张海泉, 崔旭明 2001 物理学报 08 1549Google Scholar

    Li L H, Zhang H Q, Cui X M 2001 Acta Phys. Sin. 08 1549Google Scholar

    [17]

    Ferrari A C, Kleinsorge B, Morrison N A, Hart A 1999 J. Appl. Phys. 857 191

    [18]

    Zhang X H, Jiang J Q, Zeng Y Q, Lin J L, Wang F L, Moore J J 2008 Surf. Coat. Technol. 203 594Google Scholar

    [19]

    Zeng Y Q, Qiu Y D, Mao X Y, Tan X Y, Tan Z, Zhang X H, Chen J, Jiang J Q 2015 Thin Solid Films 584 283Google Scholar

    [20]

    Dreiling I, Stiens D, Chasse T 2010 Surf. Coat. Technol. 205 1339Google Scholar

    [21]

    Rodríguez R J, García J A, Medrano A, Rico M, Sánchez R, Martínez R, Labrugère C, Lahaye M, Guette A 2002 Vacuum 67 559Google Scholar

    [22]

    段晋辉, 梁银, 裴旺, 杨喜昆 2016 金属热处理 41 139

    Du J H, Liang Y, Pei W, Yang X K 2016 Heat Treatment of Metals 41 139

    [23]

    Jang C S, Jeon J H, Song P K, Kang M C, Kim K H 2005 Surf. Coat. Technol. 200 1501Google Scholar

    [24]

    Zehnder T, Schwaller P, Munnik F, Mikhailov S, Patscheider J 2004 J. Appl. Phys 95 4327Google Scholar

    [25]

    Matthews A, Franklin S, Holmberg K 2007 J. Phys. D: Appl. Phys. 40 5463Google Scholar

    [26]

    Musil J, Jirout M 2007 Surf. Coat. Technol. 201 5148Google Scholar

    [27]

    Massiani Y, Medjahed A, Crousier J P, Gravier P, Rebatel I 1991 Surf. Coat. Technol. 45 115Google Scholar

    [28]

    陈淑年, 廖斌, 吴先映, 陈琳, 黄杰, 何光宇 2019 中国表面工程 3 49Google Scholar

    Chen S N, Liao B, Wu X Y, Chen L, Huang J, He G Y 2019 China Surface Engineering 3 49Google Scholar

    [29]

    Vacandio F, Massiani Y, Gravier P, Rossi S, Bonora P L, Fedrizzi L 2001 Electrochim. Acta 46 3827Google Scholar

    [30]

    郑建云, 郝俊英, 刘小强, 龚秋雨, 刘维民 2013 摩擦学学报 33 87

    Zheng J Y, Hao J Y, Liu X Q, Gong Q Y, Liu W M 2013 Tribology 33 87

    [31]

    Eriksson A O, Ghafoor N, Jensen J, Näslund L Å, Johansson M P, Sjölen J, Odén M, Hultman L, Rosen J 2012 Surf. Coat. Technol. 213 145Google Scholar

    [32]

    Chen L, Yang B, Xu Y X, Pei F, Zhou L C, Du Y 2014 Thin Solid Films 556369

    [33]

    HoörlingA, Hultman L, Odén M, Sjölén J, Karlsson L 2002 J. Vac. Sci. Technol. A 20 1815

    [34]

    Cheng H H, Lee C Y, Lee C C 2009 ThinSolid Films 517 5212Google Scholar

    [35]

    Xie Z W, Wang L P, Wang X F, Huang L, Lu Y, Yan J C 2011 Trans. Nonferrous Met. Soc. China 21 470Google Scholar

    [36]

    Sampath Kumar T, Balasivanandha Prabu S, Manivasagam G 2014 J. Mater. Eng. Perform 23 2877Google Scholar

    [37]

    王泓 2002 博士学位论文 (西安: 西北工业大学)

    Wang H 2002 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

  • 图 1  FCVA沉积装置示意图

    Fig. 1.  The schematic diagram of the FCVA deposition system.

    图 2  涂层中各层分布

    Fig. 2.  Distribution of the layers in the coating.

    图 3  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的截面形貌 (a) 0 sccm; (b) 10 sccm; (c) 15 sccm

    Fig. 3.  Thecrosssection of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2:(a) 0 sccm; (b) 10 sccm; (c) 15 sccm

    图 4  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的XRD图谱

    Fig. 4.  XRD diffractogram of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 5  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的拉曼谱图

    Fig. 5.  Raman spectra of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 6  S3(15 sccm, 12.39 at.%C)的XPS图谱 (a) N 1s; (b) C 1s; (c) Ti 2p; (d) Al 2p

    Fig. 6.  XPS analysis of S3: (a) N 1s;(b) C 1s;(c) Ti 2p; (d) Al 2p.

    图 7  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层在3.5 wt-% NaCl溶液中的动电位极化曲线

    Fig. 7.  Potentiodynamic polarization curves of TiAlCN/TiAlN/TiAl coatings in 3.5 wt-% NaCl solution.

    图 8  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层电化学腐蚀的数据结果

    Fig. 8.  Results of Electrochemical corrosion characterization activities for TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 9  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层电化学阻抗谱

    Fig. 9.  Electrochemical impedance spectroscopy of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 10  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的阻抗-频率图

    Fig. 10.  Bode plots ofTiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 11  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的相角-频率图

    Fig. 11.  Bode phase angle plots ofTiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 12  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层表面SEM形貌(a)0 sccm; (b)10 sccm; (c)15 sccm

    Fig. 12.  SEM surface micrographs of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2: (a)0 sccm; (b)10 sccm; (c)15 sccm.

    图 13  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的摩擦系数

    Fig. 13.  Friction coefficient curves of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 14  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的摩擦系数和磨损率

    Fig. 14.  Friction coefficientand wear rate of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    图 15  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层磨痕区的SEM图像和EDS能谱分析 (a), (b) 0 sccm; (c), (d) 10 sccm; (e), (f) 15 sccm

    Fig. 15.  SEM micrographs of the wear track and EDS results of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2: (a), (b) 0 sccm; (c), (d) 10 sccm; (e), (f) 15 sccm.

    图 16  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层磨痕处的拉曼谱图

    Fig. 16.  Raman spectra of wear track of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    表 1  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的元素相对含量

    Table 1.  Chemical composition of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    SampleC2H2/sccmTi/at.%Al/at.%N/at.%C/at.%
    TiAlN/TiAlS1030.8722.8546.28
    TiAlCN/TiAlN/TiAlS21028.6421.5241.238.61
    TiAlCN/TiAlN/TiAlS31527.6022.9537.0712.39
    下载: 导出CSV

    表 2  不同C2H2流量沉积的TiAlCN/TiAlN/TiAl涂层的显微硬度、杨氏模量和H/E比值

    Table 2.  Microhardness、Modules and ratio of H/E of TiAlCN/TiAlN/TiAl coatings deposited at various C2H2.

    SampleC2H2/sccmE/GPaH/GPaH/E
    TiAlN/TiAlS10290.2030.530.105
    TiAlCN/TiAlN/TiAlS210310.6541.160.133
    TiAlCN/TiAlN/TiAlS315316.1444.360.140
    下载: 导出CSV
  • [1]

    王均涛, 刘平, 李伟, 郑康培 2010 热加工工艺 20 104Google Scholar

    Wang J T, Liu P, Li W, Zheng K P 2010 Hot Working Technology 20 104Google Scholar

    [2]

    PalDey S, Deevi S C 2003 Sci. Eng. A 342 58Google Scholar

    [3]

    Hsu C H, Lee C Y, Lee C C 2009 Thin Solid Films 17 5212

    [4]

    Brogren M, Harding G L, Karmhag R, Ribbing C G, Niklasson G A, Stenmark L 2000 Thin Solid Films 370 268Google Scholar

    [5]

    Hovsepian PEh, Münz W D, Medlock A, Gregory G 2000 Surf. Coat. Technol. 133–134 508

    [6]

    Warcholinski B, Gilewicz A 2011 Wear 271 2812Google Scholar

    [7]

    Zheng J Y, Hao J Y, Li u X, Gong Q Y, Liu W M 2012 Surf. Coat. Technol. 209 110Google Scholar

    [8]

    Agudelo L C, Ospina R, Castillo H A, Devia A 2008 Phys. Scr. T131 014006Google Scholar

    [9]

    Kamath G, Ehiasarian A P, Purandare Y, Hovsepian PEh 2011 Surf. Coat. Technol. 205 2823Google Scholar

    [10]

    Hovsepian PEh, Ehiasarian A P, Deeming A, Schimpf C 2008 Vacuum 82 1312Google Scholar

    [11]

    Yang L J, Zhang Z H, Dang X A, Li L 2014 Mater. Sci. Forum 789 449Google Scholar

    [12]

    AL-Bukhaiti M A, Al-hatab K A, Tillmann W, Hoffmann F, Sprute T 2014 Appl. Surf. Sci. 318 180Google Scholar

    [13]

    Kawata K, Sugimura H, Takai O 2001 Thin Solid Films 390 64Google Scholar

    [14]

    单磊, 王永欣, 李金龙 2013 中国表面工程 26 86Google Scholar

    Shan L, Wang Y X, Li J L 2013 China Surface Engineering 26 86Google Scholar

    [15]

    Kuptsov K A, Kiryukhantsev-Korneev P V, Sheveryko A N, ShtanskyDV 2013 Surf. Coat. Technol. 216 273Google Scholar

    [16]

    李刘合, 张海泉, 崔旭明 2001 物理学报 08 1549Google Scholar

    Li L H, Zhang H Q, Cui X M 2001 Acta Phys. Sin. 08 1549Google Scholar

    [17]

    Ferrari A C, Kleinsorge B, Morrison N A, Hart A 1999 J. Appl. Phys. 857 191

    [18]

    Zhang X H, Jiang J Q, Zeng Y Q, Lin J L, Wang F L, Moore J J 2008 Surf. Coat. Technol. 203 594Google Scholar

    [19]

    Zeng Y Q, Qiu Y D, Mao X Y, Tan X Y, Tan Z, Zhang X H, Chen J, Jiang J Q 2015 Thin Solid Films 584 283Google Scholar

    [20]

    Dreiling I, Stiens D, Chasse T 2010 Surf. Coat. Technol. 205 1339Google Scholar

    [21]

    Rodríguez R J, García J A, Medrano A, Rico M, Sánchez R, Martínez R, Labrugère C, Lahaye M, Guette A 2002 Vacuum 67 559Google Scholar

    [22]

    段晋辉, 梁银, 裴旺, 杨喜昆 2016 金属热处理 41 139

    Du J H, Liang Y, Pei W, Yang X K 2016 Heat Treatment of Metals 41 139

    [23]

    Jang C S, Jeon J H, Song P K, Kang M C, Kim K H 2005 Surf. Coat. Technol. 200 1501Google Scholar

    [24]

    Zehnder T, Schwaller P, Munnik F, Mikhailov S, Patscheider J 2004 J. Appl. Phys 95 4327Google Scholar

    [25]

    Matthews A, Franklin S, Holmberg K 2007 J. Phys. D: Appl. Phys. 40 5463Google Scholar

    [26]

    Musil J, Jirout M 2007 Surf. Coat. Technol. 201 5148Google Scholar

    [27]

    Massiani Y, Medjahed A, Crousier J P, Gravier P, Rebatel I 1991 Surf. Coat. Technol. 45 115Google Scholar

    [28]

    陈淑年, 廖斌, 吴先映, 陈琳, 黄杰, 何光宇 2019 中国表面工程 3 49Google Scholar

    Chen S N, Liao B, Wu X Y, Chen L, Huang J, He G Y 2019 China Surface Engineering 3 49Google Scholar

    [29]

    Vacandio F, Massiani Y, Gravier P, Rossi S, Bonora P L, Fedrizzi L 2001 Electrochim. Acta 46 3827Google Scholar

    [30]

    郑建云, 郝俊英, 刘小强, 龚秋雨, 刘维民 2013 摩擦学学报 33 87

    Zheng J Y, Hao J Y, Liu X Q, Gong Q Y, Liu W M 2013 Tribology 33 87

    [31]

    Eriksson A O, Ghafoor N, Jensen J, Näslund L Å, Johansson M P, Sjölen J, Odén M, Hultman L, Rosen J 2012 Surf. Coat. Technol. 213 145Google Scholar

    [32]

    Chen L, Yang B, Xu Y X, Pei F, Zhou L C, Du Y 2014 Thin Solid Films 556369

    [33]

    HoörlingA, Hultman L, Odén M, Sjölén J, Karlsson L 2002 J. Vac. Sci. Technol. A 20 1815

    [34]

    Cheng H H, Lee C Y, Lee C C 2009 ThinSolid Films 517 5212Google Scholar

    [35]

    Xie Z W, Wang L P, Wang X F, Huang L, Lu Y, Yan J C 2011 Trans. Nonferrous Met. Soc. China 21 470Google Scholar

    [36]

    Sampath Kumar T, Balasivanandha Prabu S, Manivasagam G 2014 J. Mater. Eng. Perform 23 2877Google Scholar

    [37]

    王泓 2002 博士学位论文 (西安: 西北工业大学)

    Wang H 2002 Ph. D. Dissertation (Xian: Northwestern Polytechnical University) (in Chinese)

  • [1] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] 廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣. T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为. 物理学报, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [3] 陈延辉, 谢伟博, 代克杰, 高玲肖, 卢山, 陈鑫, 李宇航, 牟笑静. 非谐振式低频电磁-摩擦电复合振动能收集器. 物理学报, 2020, 69(20): 208402. doi: 10.7498/aps.69.20200793
    [4] 沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨. 高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能. 物理学报, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [5] 程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠. Cr含量对Ti-Nb-Cr合金抗腐蚀性影响的电子结构计算. 物理学报, 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [6] 李绿洲, 蒋继乐, 卫荣汉, 李俊鹏, 田煜, 丁建宁. 涂覆聚甲基丙酸甲酯的磁性膜外磁场作用下的往复滑动摩擦行为研究. 物理学报, 2016, 65(1): 018103. doi: 10.7498/aps.65.018103
    [7] 安书董, 王晓燕, 陈仙, 王炎武, 王晓波, 赵玉清. 基底表面纳米织构对非晶四面体碳膜结构和摩擦特性的影响研究. 物理学报, 2015, 64(3): 036801. doi: 10.7498/aps.64.036801
    [8] 孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇. HT-7装置液态锂限制器实验中锂的腐蚀与沉积特性的研究. 物理学报, 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [9] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [10] 胡卫强, 刘宗德, 王永田, 夏兴祥. 快冷熔覆法原位合成大厚度铁基非晶复合涂层的研究. 物理学报, 2011, 60(2): 027103. doi: 10.7498/aps.60.027103
    [11] 韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清. 磁过滤器电流对非晶碳薄膜摩擦学特性影响的研究. 物理学报, 2011, 60(4): 046802. doi: 10.7498/aps.60.046802
    [12] 张辉, 吴迪, 张国英, 肖明珠. 铜基大块非晶合金添加微量元素对腐蚀行为的影响机理研究. 物理学报, 2010, 59(1): 488-493. doi: 10.7498/aps.59.488
    [13] 刘贵立. 镁合金电子结构与腐蚀特性研究. 物理学报, 2010, 59(4): 2708-2713. doi: 10.7498/aps.59.2708
    [14] 戎海武, 王向东, 徐伟, 方同. 窄带随机噪声作用下单自由度非线性干摩擦系统的响应. 物理学报, 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [15] 刘贵立, 方戈亮. Sc在Al-Zn-Mg-Cu超高强铝合金中作用机理的电子理论研究. 物理学报, 2009, 58(7): 4872-4877. doi: 10.7498/aps.58.4872
    [16] 刘贵立. 钛的腐蚀与钝化机理电子理论研究. 物理学报, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
    [17] 柳 林, 孙 民, 谌 祺, 刘 兵, 邱春雷. Zr-Cu-Ni-Al-Nb大块非晶合金的晶化行为、力学性能及电化学腐蚀行为的研究. 物理学报, 2006, 55(4): 1930-1935. doi: 10.7498/aps.55.1930
    [18] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [19] 张谷令, 王久丽, 杨武保, 范松华, 刘赤子, 杨思泽. 内表面栅极等离子体源离子注入TiN薄膜及其特性研究. 物理学报, 2003, 52(9): 2213-2218. doi: 10.7498/aps.52.2213
    [20] 张武, 王燕. 光学非均匀复合材料的多元滞后器模型. 物理学报, 1994, 43(8): 1380-1385. doi: 10.7498/aps.43.1380
计量
  • 文章访问数:  9573
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-03-23
  • 刊出日期:  2020-05-20

/

返回文章
返回