搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同离子辐照氟化锂材料时原位发光光谱测量分析

仇猛淋 赵国强 王庭顺 罗长维 王广甫 张丰收 吕沙沙 廖斌

引用本文:
Citation:

不同离子辐照氟化锂材料时原位发光光谱测量分析

仇猛淋, 赵国强, 王庭顺, 罗长维, 王广甫, 张丰收, 吕沙沙, 廖斌

In situ luminescence measurement from lithium fluoride under various ions

Qiu Meng-lin, Zhao Guo-qiang, Wang Ting-shun, Luo Chang-wei, Wang Guang-fu, Zhang Feng-shou, Lv Sha-sha, Liao Bin
PDF
HTML
导出引用
  • 在BNU400注入机上搭建的离子激发发光(ion beam induced luminescence, IBIL)测量装置上, 开展了相同能量(100 keV)条件下的3种离子(H+、He+以及O+)辐照氟化锂材料时的IBIL光谱的原位测量工作, 对比研究离子种类对氟化锂材料辐照缺陷的生成及其演变行为的影响. 结合SRIM(Stopping and Range of Ions in Matter)模拟的结果, 可以发现He+辐照时的IBIL光谱强度最高, 这是由于He+激发产生的电子空穴对密度高于H+,而O+辐照时由于激发出的电子空穴对密度过高引起的非辐射复合比例增加, 从而导致发光效率过低; 质量数越大的离子辐照时, 核阻止本领越大, 会加快缺陷的生成和湮灭速率, 降低达到平衡状态时的发光强度. 近红外波段的$ \rm F_3^{-}/F_2^+ $色心发光峰强度及其演变行为表明其耐辐照性能好于可见光波段的F2色心.
    To contrast the generation and their evolution behaviors of irradiation damage in lithium fluoride under various ion, in situ luminescence measurements from lithium fluoride are carried out under 100 keV H+, He+ and O+ on the ion beam induced luminescence(IBIL) experimental setup on BNU400 ion implanter. Combined with Stopping and Range of Ions in Matter (SRIM) calculation of 100 keV H+, He+ and O+ stopping power in lithium fluoride, the emission intensity under He+ is the strongest,due to the higher excitation density of electron-hole pairs than them under H+ and the rising non-radiative recombination ratio under heavy ion O+. With the mass number increase of the incident ion, the nuclear stopping power would be increased, resulting in the faster rate of both formation and annihilation of point defects、the lower fluence for F-type centers reaching the highest intensity and the weaker luminescence intensity at the state of equilibrium. The irradiation resistance of $ \rm F_3^{-}/F_2^+ $ centers at 880 nm are better than the F2 centers at 670 nm, shown not only in the slower formation and annihilation rates of $ \rm F_3^{-}/F_2^+ $ centers but also the higher luminescence intensity of $ \rm F_3^{-}/F_2^+ $ centers under heavy ion O+.
      通信作者: 王广甫, 88088@bnu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11905010)、中央高校基本科研业务费专项资金(批准号: 2018NTST04)、中国博士后科学基金(批准号: 2019M650526)和广东省重点领域研发计划(批准号: 2019B090909002)资助的课题
      Corresponding author: Wang Guang-fu, 88088@bnu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11905010), the Fundamental Research Funds for the Central Universities (2018NTST04), the China Postdoctoral Science Foundation funded project(2019M650526)and Guangdong Province Key Area R&D Program (2019B090909002)
    [1]

    黄振辉 1983 人工晶体学报 4 36

    Huang Z H, 1983 J. Synthetic. Cryst. 4 36

    [2]

    Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107Google Scholar

    [3]

    Baldacchini G, Davidson A T, Kalinov V S, KozakiewiczA G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371

    [4]

    Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132Google Scholar

    [5]

    Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23Google Scholar

    [6]

    Voitovich A P, Kalinov V S, Runets L P, Stupak A P, Martynovich E F, Montereali R M, Baldacchini G 2013 J. Lumin. 143 207Google Scholar

    [7]

    Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104Google Scholar

    [8]

    Baldacchini G 2002 J. Lumin. 100 333Google Scholar

    [9]

    Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum.Meth. Phys. Res. B 245 194Google Scholar

    [10]

    杨百瑞, 李文琪 1993 人工晶体学报 2 163

    Yang B R, Li W Q 1993 J. Synthetic. Cryst. 2 163

    [11]

    Townsend P D, Wang Y F 2013 Energy.Proced. 41 64Google Scholar

    [12]

    Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208Google Scholar

    [13]

    Skuratov V A, Didyk A Y, Alazm S A 1997 Radiat. Phys. Chem. 50 183Google Scholar

    [14]

    Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1Google Scholar

    [15]

    仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 物理学报 66 207801Google Scholar

    Qiu M L, Wang G F, Chu Y J, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar

    [16]

    Chu Y J, Wang G F, Zheng L, Qiu M L, Yin P, Xu M 2018 Surf. Coat. Tech. 348 91Google Scholar

    [17]

    Bachiller-Perea D, Jiménez-Rey D, Muñoz-Martín A, Agulló-López, F 2016 J. Phys. D. Appl. Phys. 49 085501Google Scholar

    [18]

    Jiménez-Rey D, Peña-Rodríguez O, Manzano-Santamaría J, Olivares J, Muñoz-Martín A, Rivera A, Agulló-López F 2012 Nucl.Instrum.Meth. Phys. Res. B 286 282Google Scholar

    [19]

    Crespillo M L, Graham J T, Agullo-Lopez F, Zhang Y, Weber W J 2017 J. Phys. Chem. C. 121 19758Google Scholar

    [20]

    Agullo-Lopez F, Climent-Font A, Muñoz-Martín Á, Olivares J, Zucchiatti A 2016 Prog. Mater. Sci. 76 1Google Scholar

    [21]

    Rivera A, Méndez A, García G, Olivares J, Cabrera J M, Agulló-López F 2008 J. Lumin. 128 703Google Scholar

  • 图 1  BNU400注入机IBIL装置示意图

    Fig. 1.  Schematic of the IBIL experimental setup on BNU400 ion implanter

    图 2  100 keV能量时H+、He+和O+离子在氟化锂中的阻止本领的SRIM 模拟结果

    Fig. 2.  SRIM calculation of 100 keV H+, He+ and O+ stopping power in lithium fluoride

    图 3  100 keV的H+辐照单晶氟化锂的发光强度随注量演变情况

    Fig. 3.  Emission intensity as function of both fluence and wavelength obtained under 100 keV H+

    图 4  100 keV的H+离子辐照氟化锂时296 nm、340 nm和400 nm处发光强度随注量演变情况

    Fig. 4.  Evolutions of the luminescence peak intensities at 296, 340, 400 nm with the irradiation fluence under 100 keV H+

    图 5  100 keV的H+离子辐照氟化锂时540 nm、670 nm和880 nm处发光强度随注量演变情况

    Fig. 5.  Evolutions of the luminescence peak intensities at 540, 670, 880 nm with the irradiation fluence under 100 keV H+

    图 6  100 keV的He+离子辐照氟化锂296 nm、340 nm和400 nm处发光强度随注量演变情况

    Fig. 6.  Evolutions of the luminescence peak intensities at 296, 340, 400 nm with the irradiation fluence under 100 keV He+

    图 7  100 keV的He+离子辐照氟化锂540 nm、670 nm和880 nm处发光强度随注量演变情况

    Fig. 7.  Evolutions of the luminescence peak intensities at 540, 670, 880 nm with the irradiation fluence under 100 keV He+

    图 8  100 keV的O+离子辐照氟化锂时296 nm、340 nm和400 nm处发光强度随注量演变情况

    Fig. 8.  Evolutions of the luminescence peak intensities at 296, 340, 400 nm with the irradiation fluence under 100 keV O+

    图 9  100 keV的O+离子辐照氟化锂540 nm、670 nm和880 nm处发光强度随注量演变情况

    Fig. 9.  Evolutions of the luminescence peak intensities at 540, 670, 880 nm with the irradiation fluence under 100 keV O+

    表 1  100 keV的H+、He+和O+3种离子辐照氟化锂材料的结果对比

    Table 1.  Comparisons of lithium fluoride under 100 keV H+, He+ and O+

    离子种类$ \rm F_3^{-} $色心 Φmax/cm–2F2色心 Φmax/cm–2$ \rm F_3^{-}/F_2^+ $色心 Φmax/cm–2Se/eV·Å–1Sn/eV·Å–1Rp/μm
    H+10 × 101311.5 × 101324.3 × 101313.920.02320.8336
    He+5 × 10133.3 × 10139.5 × 101321.040.30040.6708
    O+3.8 × 10133 × 10135.9 × 101325.6410.150.2459
    下载: 导出CSV
  • [1]

    黄振辉 1983 人工晶体学报 4 36

    Huang Z H, 1983 J. Synthetic. Cryst. 4 36

    [2]

    Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107Google Scholar

    [3]

    Baldacchini G, Davidson A T, Kalinov V S, KozakiewiczA G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371

    [4]

    Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132Google Scholar

    [5]

    Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23Google Scholar

    [6]

    Voitovich A P, Kalinov V S, Runets L P, Stupak A P, Martynovich E F, Montereali R M, Baldacchini G 2013 J. Lumin. 143 207Google Scholar

    [7]

    Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104Google Scholar

    [8]

    Baldacchini G 2002 J. Lumin. 100 333Google Scholar

    [9]

    Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum.Meth. Phys. Res. B 245 194Google Scholar

    [10]

    杨百瑞, 李文琪 1993 人工晶体学报 2 163

    Yang B R, Li W Q 1993 J. Synthetic. Cryst. 2 163

    [11]

    Townsend P D, Wang Y F 2013 Energy.Proced. 41 64Google Scholar

    [12]

    Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208Google Scholar

    [13]

    Skuratov V A, Didyk A Y, Alazm S A 1997 Radiat. Phys. Chem. 50 183Google Scholar

    [14]

    Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1Google Scholar

    [15]

    仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 物理学报 66 207801Google Scholar

    Qiu M L, Wang G F, Chu Y J, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar

    [16]

    Chu Y J, Wang G F, Zheng L, Qiu M L, Yin P, Xu M 2018 Surf. Coat. Tech. 348 91Google Scholar

    [17]

    Bachiller-Perea D, Jiménez-Rey D, Muñoz-Martín A, Agulló-López, F 2016 J. Phys. D. Appl. Phys. 49 085501Google Scholar

    [18]

    Jiménez-Rey D, Peña-Rodríguez O, Manzano-Santamaría J, Olivares J, Muñoz-Martín A, Rivera A, Agulló-López F 2012 Nucl.Instrum.Meth. Phys. Res. B 286 282Google Scholar

    [19]

    Crespillo M L, Graham J T, Agullo-Lopez F, Zhang Y, Weber W J 2017 J. Phys. Chem. C. 121 19758Google Scholar

    [20]

    Agullo-Lopez F, Climent-Font A, Muñoz-Martín Á, Olivares J, Zucchiatti A 2016 Prog. Mater. Sci. 76 1Google Scholar

    [21]

    Rivera A, Méndez A, García G, Olivares J, Cabrera J M, Agulló-López F 2008 J. Lumin. 128 703Google Scholar

  • [1] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [2] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [3] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [4] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [5] 高伟, 王博扬, 孙泽煜, 高露, 张晨雪, 韩庆艳, 董军. 改变激发环境调控Ho3+离子的上转换发光特性. 物理学报, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [6] 罗长维, 仇猛淋, 王广甫, 王庭顺, 赵国强, 华青松. 利用离子激发发光研究ZnO离子注入和退火处理的缺陷变化. 物理学报, 2020, 69(10): 102901. doi: 10.7498/aps.69.20200029
    [7] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应. 物理学报, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [8] 仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏. 高低温条件下氟化锂材料的离子激发发光光谱分析. 物理学报, 2017, 66(20): 207801. doi: 10.7498/aps.66.207801
    [9] 梁腾, 马堃, 武中文, 张登红, 董晨钟, 师应龙. Xe53+离子与Xe原子碰撞过程中的辐射电子俘获和辐射退激发光谱的理论研究. 物理学报, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [10] 覃怀莉, 薛建明, 赖江南, 王建勇, 苗 琦, 张伟明, 马 磊, 颜 莎, 赵渭江, 顾红雅, 王宇钢. 拟南芥胚的不同区域对MeV离子辐照的响应. 物理学报, 2006, 55(11): 5991-5995. doi: 10.7498/aps.55.5991
    [11] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, 2006, 55(9): 4520-4527. doi: 10.7498/aps.55.4520
    [12] 赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎. 高电荷态离子126Xeq+与Ti固体表面作用的激发光谱. 物理学报, 2003, 52(11): 2768-2773. doi: 10.7498/aps.52.2768
    [13] 叶超, 宁兆元, 程珊华. 电子回旋共振等离子体增强沉积氟化非晶碳薄膜的光学性质. 物理学报, 2001, 50(10): 2017-2022. doi: 10.7498/aps.50.2017
    [14] 张 龙, 张军杰, 祁长鸿, 林凤英, 胡和方. 稀土离子掺杂的AlF3基氟化物玻璃. 物理学报, 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620
    [15] 金庆华, 冯少新, 郭振亚, 李宝会, 丁大同. 碱土氟化物离子晶体中点缺陷形成能计算. 物理学报, 1999, 48(7): 1261-1268. doi: 10.7498/aps.48.1261
    [16] 冯少新, 金庆华, 郭振亚, 李宝会, 丁大同. 碱土氟化物中离子间相互作用势经验参数的确定. 物理学报, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [17] 滕华国, 徐至展, 胡畏, 王炎森, 方渡飞. 类钠铜离子的激发自电离. 物理学报, 1996, 45(11): 1788-1792. doi: 10.7498/aps.45.1788
    [18] 郑海兴, 吴光照, 干福熹. 氟化物、氟磷酸盐和磷酸盐玻璃中Er3+离子的发光研究. 物理学报, 1985, 34(12): 1582-1594. doi: 10.7498/aps.34.1582
    [19] 李家明. 电子与类锂离子碰撞激发. 物理学报, 1980, 29(4): 419-428. doi: 10.7498/aps.29.419
    [20] 孙家锺, 蒋栋成, 施安顿, 周木易. 电子极化对氟化钙离子晶体的弹性系数、压电系数和介电常数的影响. 物理学报, 1965, 21(2): 402-413. doi: 10.7498/aps.21.402
计量
  • 文章访问数:  7280
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-02-06
  • 刊出日期:  2020-05-20

/

返回文章
返回