-
Nitrogen-doped diamond like carbon film is promising in biological applications, studying the synergistic tribocorrosion performance is indispensable. In this paper, Nitrogen-doped diamond like carbon films were deposited on AISI 304L austenitic stainless steels and Si substrate by using the high power impulse magnetron sputtering technique using Ar and N2 as precursors at room temperature. The effect of target pulse duration on the structure, mechanical properties, corrosion resistance and tribocorrosion properties in Hank's equilibrium salt solution and the corresponding mechanism were studied. The results of scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and nano-hardness test showed that the nitrogen-doped diamond like carbon coatings prepared at a target pulse duration of 60 μs showed the sp3 bonding content of 33.9% with the hardness of 12.4 GPaand the root mean square roughness of 0.63 nm. With the increase in pulse duration to 90 μs, the sp2 bonding increased, meanwhile the surface roughness increased. The results of potentiodynamic polarization indicated that the Nitrogen-doped diamond like carbon coating prepared at 60μs had best corrosion resistance with the corrosion current density of 7.65 × 10–8 A·cm–2. The effect of the target pulse duration on tribocorrosionbehaviour of the Nitrogen-doped diamond like carboncoating was investigated in Hank’s solution by a reciprocating tribometer equipped with a three-electrode electrochemical cell.The coatings at 60 μs exhibited excellent tribocorrosion properties with high open circuit potential of 39 mV, low COF of 0.05 without pitting corrosion due to high corrosionresistance, low contact angel and dense microstructure.The results indicated that corrosion can be accelerated by friction, but it also affect the mechanical properties of the Nitrogen-doped diamond like carbon coatings. The increase in pulse duration to 90 μs, leading to the reduction of sp3 bonds which can form a cross-linking structure. The degraded cross-linking structure decreased the corrosion resistance of the coating via the increased porosity in the coating, which weakened the interfacial strength of the coating, and ultimately led to failure of the coatingunder the action of wear.
-
Keywords:
- high power impulse magnetron sputtering /
- Nitrogen-doped diamond like carbon coating /
- tribocorrosion behavior /
- corrosion
[1] Tyagi A, Walia R S, Murtaza Q, Pandey S M, Bajaj B 2019 Int. J. Refract. Met. Hard Mater. 78 107
Google Scholar
[2] Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q 2017 Surf. Coat. Technol. 332 120
Google Scholar
[3] Son M J, Zhang T F, Jo Y J, Kim K H 2017 Surf. Coat. Technol. 329 77
Google Scholar
[4] Wang C, Yang S, Zhang J 2008 J. Non. Cryst. Solids 354 1608
Google Scholar
[5] Muhl S, Mendez J M 1999 Diam. Relat. Mater. 8 1809
Google Scholar
[6] Zheng C L, Cui F Z, Meng B, Ge J, Liu D P, Lee I S 2005 Surf. Coat. Technol. 193 361
Google Scholar
[7] Dress D, Celis J P, Dekempeneer E, Meneve J 1996 Surf. Coat. Technol. 85-86 575
[8] Ronkainen H, Varjus S, Holmberg K 1998 Wear 222 120
Google Scholar
[9] Park S J, Lee K R, Ahn S H, Kim J G 2008 Diam. Relat. Mater. 17 247
Google Scholar
[10] Ohana T, Nakamura T, Suzuki M, Tanaka A, Koga Y 2004 Diam. Relat. Mater. 13 1500
Google Scholar
[11] Lü Y, Li J, Liu X, Li H, Zhou H, Chen J 2012 Appl. Surf. Sci. 258 3864
Google Scholar
[12] Cheng H C, Chiou S Y, Liu C M, Lin M H, Chen C C, Ou K L 2009 J. Alloy. Compd. 477 931
Google Scholar
[13] Kim D H, Kim H E, Lee K R, Whang C N, Lee I S 2002 Mater. Sci. Eng. C 22 9
Google Scholar
[14] Manhabosco T M, Müller I L 2009 Tribol. Lett. 33 193
Google Scholar
[15] Azzi M, Paquette M, Szpunar J A, Klemberg-Sapieha J E, Martinu L 2009 Wear 267 860
Google Scholar
[16] Sharifahmadian O, Mahboubi F 2019 Ceram. Int. 45 16424
Google Scholar
[17] Guerino M, Massi M, Maciel H S 2003 Microelectronic. J. 34 639
Google Scholar
[18] Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284
Google Scholar
[19] Ricard A, Nouvellon C, Konstantinidis S, Dauchot J, Wautelet M, Hecq M 2002 J. Vac. Sci. Technol. A 20 1488
Google Scholar
[20] Christou C, Barber Z H 2000 J. Vac. Sci. Technol. A 18 2897
Google Scholar
[21] Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290
Google Scholar
[22] Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661
Google Scholar
[23] Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys 42 015304
Google Scholar
[24] Wu Z R, Zhang M, Cui F Z 2007 Surf. Coat. Technol. 201 5710
Google Scholar
[25] Bouchetfabre B, Lazar G, Ballutaud D, Godet C, Zellama K 2008 Diam. Relat. Mater. 17 700
Google Scholar
[26] Ujvári T, Szikora B, Tóth A, Mohai M, Bertóti I 2002 Diam. Relat. Mater. 11 1200
[27] Gago R, Jiménez I, Cáceres D, Agulló-Rueda F, Sajavara T, Albella J M, Climent-Font A, Vergara I, Räisänen J, Raühala E 2001 Chem. Mater. 13 129
Google Scholar
[28] Ferrari A, Rodil S, Robertson J 2003 Phys. Rev. B 67 155306
Google Scholar
[29] Wei S, Shao T, Peng D 2010 Diam. Relat. Mater. 19 648
Google Scholar
[30] Niu L F, Zhang S J, Li D J, Zhang J K, Yang S G, Tian Z, Huang Z G, Zhang H L J 2001 Adhes. Sci. Technol. 15 1121
Google Scholar
[31] Matthews A, Franklin S, Holmberg K 2007 J. Phys. D. Appl. Phys. 40 5463
Google Scholar
[32] Philippon D, Godinho V, Nagy P M, Delplancke-Ogletree M P, Fernández A 2011 Wear 270 541
[33] Beake B D, Vishnyakov V M, Valizadeh R, Colligon J S 2006 J. Phys. D: Appl. Phys. 39 1392
Google Scholar
[34] Ou Y X, Chen H, Li Z Y, Lin J, Lei M K 2018 J. Am. Ceram. Soc. 101 5166
Google Scholar
[35] Martini E M A, Muller I L 2000 Corros. Sci. 42 443
Google Scholar
[36] Parfenov E V, Yerokhin A L, Matthews A 2007 Thin Solid Films 516 428
Google Scholar
[37] Matthes B, Broszeit E, Aromaa J, Ronkainen H, Hannula SP, Leyland A, Matthews A 1991 Surf. Coat. Technol. 49 489
Google Scholar
[38] Pu J, Wang J, He D, Wan S 2016 Surf. Interface Anal. 48 360
Google Scholar
[39] Stansbury E E, Buchanan R A 1981 ASM International (USA: Materials Park, OH) p55
[40] Písařík P, Mikšovský J, Remsa J, Zemek J, Tolde Z, Jelínek M 2018 Appl. Phys. A 124 85
[41] Wang Y, Wang L, Wang S C, Zhang G, Wood R J K, Xue Q 2010 Tribol. Lett. 40 301
Google Scholar
-
图 8 (a)—(c)磨蚀实验中OCP和摩擦系数随着滑行时间的变化以及磨痕的光学图片; (d)摩擦实验中90 μs制备膜的摩擦系数和磨痕图
Figure 8. (a)–(c) The changes of OCP and coefficient of friction as a function of sliding times and the inserted optical micrographs of tribocorrosion tracks for coatings; (d) the normal coefficient of friction and micrographs of wear tracks.
表 1 不锈钢衬底和N-DLC膜的动电位极化曲线的拟合结果
Table 1. The fitting results of the potentiodynamic polarization curves of the N-DLC films and substrate.
样品 Ecorr/V icorr/A·cm–2 ba/mV bc/mV Rp/Ω·cm2 P 304 L –0.31 1.69 × 10–6 323.47 117.75 2.21 × 107 — 30 μs –0.15 9.87 × 10–8 289.51 119.61 3.72 × 108 0.042 60 μs –0.13 7.65 × 10–8 408.84 113.72 5.05 × 108 0.026 90 μs –0.12 1.55 × 10–7 298.24 82.91 2.05 × 108 0.079 -
[1] Tyagi A, Walia R S, Murtaza Q, Pandey S M, Bajaj B 2019 Int. J. Refract. Met. Hard Mater. 78 107
Google Scholar
[2] Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q 2017 Surf. Coat. Technol. 332 120
Google Scholar
[3] Son M J, Zhang T F, Jo Y J, Kim K H 2017 Surf. Coat. Technol. 329 77
Google Scholar
[4] Wang C, Yang S, Zhang J 2008 J. Non. Cryst. Solids 354 1608
Google Scholar
[5] Muhl S, Mendez J M 1999 Diam. Relat. Mater. 8 1809
Google Scholar
[6] Zheng C L, Cui F Z, Meng B, Ge J, Liu D P, Lee I S 2005 Surf. Coat. Technol. 193 361
Google Scholar
[7] Dress D, Celis J P, Dekempeneer E, Meneve J 1996 Surf. Coat. Technol. 85-86 575
[8] Ronkainen H, Varjus S, Holmberg K 1998 Wear 222 120
Google Scholar
[9] Park S J, Lee K R, Ahn S H, Kim J G 2008 Diam. Relat. Mater. 17 247
Google Scholar
[10] Ohana T, Nakamura T, Suzuki M, Tanaka A, Koga Y 2004 Diam. Relat. Mater. 13 1500
Google Scholar
[11] Lü Y, Li J, Liu X, Li H, Zhou H, Chen J 2012 Appl. Surf. Sci. 258 3864
Google Scholar
[12] Cheng H C, Chiou S Y, Liu C M, Lin M H, Chen C C, Ou K L 2009 J. Alloy. Compd. 477 931
Google Scholar
[13] Kim D H, Kim H E, Lee K R, Whang C N, Lee I S 2002 Mater. Sci. Eng. C 22 9
Google Scholar
[14] Manhabosco T M, Müller I L 2009 Tribol. Lett. 33 193
Google Scholar
[15] Azzi M, Paquette M, Szpunar J A, Klemberg-Sapieha J E, Martinu L 2009 Wear 267 860
Google Scholar
[16] Sharifahmadian O, Mahboubi F 2019 Ceram. Int. 45 16424
Google Scholar
[17] Guerino M, Massi M, Maciel H S 2003 Microelectronic. J. 34 639
Google Scholar
[18] Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284
Google Scholar
[19] Ricard A, Nouvellon C, Konstantinidis S, Dauchot J, Wautelet M, Hecq M 2002 J. Vac. Sci. Technol. A 20 1488
Google Scholar
[20] Christou C, Barber Z H 2000 J. Vac. Sci. Technol. A 18 2897
Google Scholar
[21] Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290
Google Scholar
[22] Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661
Google Scholar
[23] Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys 42 015304
Google Scholar
[24] Wu Z R, Zhang M, Cui F Z 2007 Surf. Coat. Technol. 201 5710
Google Scholar
[25] Bouchetfabre B, Lazar G, Ballutaud D, Godet C, Zellama K 2008 Diam. Relat. Mater. 17 700
Google Scholar
[26] Ujvári T, Szikora B, Tóth A, Mohai M, Bertóti I 2002 Diam. Relat. Mater. 11 1200
[27] Gago R, Jiménez I, Cáceres D, Agulló-Rueda F, Sajavara T, Albella J M, Climent-Font A, Vergara I, Räisänen J, Raühala E 2001 Chem. Mater. 13 129
Google Scholar
[28] Ferrari A, Rodil S, Robertson J 2003 Phys. Rev. B 67 155306
Google Scholar
[29] Wei S, Shao T, Peng D 2010 Diam. Relat. Mater. 19 648
Google Scholar
[30] Niu L F, Zhang S J, Li D J, Zhang J K, Yang S G, Tian Z, Huang Z G, Zhang H L J 2001 Adhes. Sci. Technol. 15 1121
Google Scholar
[31] Matthews A, Franklin S, Holmberg K 2007 J. Phys. D. Appl. Phys. 40 5463
Google Scholar
[32] Philippon D, Godinho V, Nagy P M, Delplancke-Ogletree M P, Fernández A 2011 Wear 270 541
[33] Beake B D, Vishnyakov V M, Valizadeh R, Colligon J S 2006 J. Phys. D: Appl. Phys. 39 1392
Google Scholar
[34] Ou Y X, Chen H, Li Z Y, Lin J, Lei M K 2018 J. Am. Ceram. Soc. 101 5166
Google Scholar
[35] Martini E M A, Muller I L 2000 Corros. Sci. 42 443
Google Scholar
[36] Parfenov E V, Yerokhin A L, Matthews A 2007 Thin Solid Films 516 428
Google Scholar
[37] Matthes B, Broszeit E, Aromaa J, Ronkainen H, Hannula SP, Leyland A, Matthews A 1991 Surf. Coat. Technol. 49 489
Google Scholar
[38] Pu J, Wang J, He D, Wan S 2016 Surf. Interface Anal. 48 360
Google Scholar
[39] Stansbury E E, Buchanan R A 1981 ASM International (USA: Materials Park, OH) p55
[40] Písařík P, Mikšovský J, Remsa J, Zemek J, Tolde Z, Jelínek M 2018 Appl. Phys. A 124 85
[41] Wang Y, Wang L, Wang S C, Zhang G, Wood R J K, Xue Q 2010 Tribol. Lett. 40 301
Google Scholar
Catalog
Metrics
- Abstract views: 11050
- PDF Downloads: 184
- Cited By: 0