-
Three-dimensional(3D) transmon is a kind of superconducting qubit with long decoherence time, which has important applications in superconducting quantum computation, quantum optics, cavity quantum electrodynamics, et al. Rabi oscillation is a vital method to characterize the decoherence time of quantum system, and it is also a basic experiment to demonstrate the energy level evolution of quantum system. In order to test the Rabi oscillation of 3D transmon, strict timing control is necessary, and the process of testing and debugging is complicated. In this paper, 3D transmon samples are fabricated and their basic parameters EC = 348.74 MHz and EJ = 11.556 GHz are tested and characterized. The coupling coefficient g2/Δ between qubit and the 3D cavity is 43 MHz, which is located in the dispersive regime. The qubit’s first transition frequency f01 = 9.2709 GHz, and the second transition frequency f12 = 9.0100 GHz. The 3D resonator is fabricated by the material 6061T6 aluminum, the loaded quality factor is 4.8 × 105, and the bare frequency of the resonator is 8.108 GHz. Through comparison, it is found that the Rabi oscillation time obtained by the proposed method is shorter than by the Jaynes-Cummings method. The main reasons are as follows. First, the measurement of network analyzer is a continuous measurement, and the test signal always affects the decoherence process of 3D transmon. Second, the quantum bit is in the ground state after decoherence, and the ground state measured by the network analyzer accounts for a relatively high proportion, which causes the curve measured by the network analyzer to be one-sided attenuation oscillation. Third, the dispersive readout method is related to the quality factor of the superconducting cavity. The storage time of microwave photons in the superconducting cavity is longer than the decoherence time of 3D transmon, so the quantum information is partially decohered before leaving the superconducting cavity, which will shorten the Rabi oscillation time. An innovative Rabi oscillation test method based on network analyzer is presented. The test system based on this method is simple to build and can be used as a new way to quickly verify whether 3D transmon has quantum characteristics. This method can also be extended to other quantum systems for preliminarily verifying the time domain characteristics. -
Keywords:
- 3D Transmon /
- network analyzer /
- dispersive measurement /
- Rabi oscillation
[1] You J Q, Nori F 2005 Phys. Today 58 42
[2] You J Q, Nori F 2011 Nature 474 589Google Scholar
[3] Krantz P, Kjaergaard M, Yan F, et al. 2019 Appl. Phys. Rev. 6 021318Google Scholar
[4] 赵虎, 李铁夫, 刘建设, 陈炜 2012 物理学报 61 154214Google Scholar
Zhao H, Li T F, Liu J S, Chen W 2012 Acta Phys. Sin. 61 154214Google Scholar
[5] Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 6385
[6] Klimov P V, Kelly J, Chen J, et al. 2018 Phys. Rev. Lett. 121 090502Google Scholar
[7] Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 666
[8] Bunyk P I, Hoskinson E M, Johnson M W, et al. 2014 IEEE Trans. Appl. Supercond. 24 4Google Scholar
[9] Mooij J E, Orlando T P, Leviotv L, et al. 1999 Science 285 1036Google Scholar
[10] Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar
[11] Friedman J R, Patel V, Chen W, et al. 2000 Nature 406 43Google Scholar
[12] Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar
[13] Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162Google Scholar
[14] Paik H, Schuster D I, Bishop L S, et al. 2011 Phys. Rev. Lett. 107 240501Google Scholar
[15] Chiorescu I, Nakamura Y, Harmans C J P M, et al. 2003 Science 299 1869Google Scholar
[16] Vion D, Aassime A, Cottet A, et al. 2002 Science 296 886Google Scholar
[17] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502Google Scholar
[18] Yan F, Gustavsson S, Kamal A, et al. 2016 Nat. Commun. 7 12964Google Scholar
[19] You J Q, Hu X, Ashhab S, et al. 2006 Phys. Rev. B 75 140551
[20] Wallraff A, Schuster D I, Blais A, et al. 2005 Phys. Rev. Lett. 95 060501Google Scholar
[21] Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601Google Scholar
[22] Koch J, Yu T M, Gambetta J, et al. 2007 Phys. Rev. A 76 042319Google Scholar
[23] Zhao H, Li T F, Liu Q C, et al. 2014 Chin. Phys. Lett. 31 102101Google Scholar
[24] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜 2014 物理学报 63 220305Google Scholar
Zhao H, Li T F, Liu Q C, Zhang Y S, Liu J S, Chen W 2014 Acta Phys. Sin. 63 220305Google Scholar
-
-
[1] You J Q, Nori F 2005 Phys. Today 58 42
[2] You J Q, Nori F 2011 Nature 474 589Google Scholar
[3] Krantz P, Kjaergaard M, Yan F, et al. 2019 Appl. Phys. Rev. 6 021318Google Scholar
[4] 赵虎, 李铁夫, 刘建设, 陈炜 2012 物理学报 61 154214Google Scholar
Zhao H, Li T F, Liu J S, Chen W 2012 Acta Phys. Sin. 61 154214Google Scholar
[5] Neill C, Roushan P, Kechedzhi K, et al. 2018 Science 360 6385
[6] Klimov P V, Kelly J, Chen J, et al. 2018 Phys. Rev. Lett. 121 090502Google Scholar
[7] Blais A, Huang R S, Wallraff A, et al. 2004 Phys. Rev. A 69 666
[8] Bunyk P I, Hoskinson E M, Johnson M W, et al. 2014 IEEE Trans. Appl. Supercond. 24 4Google Scholar
[9] Mooij J E, Orlando T P, Leviotv L, et al. 1999 Science 285 1036Google Scholar
[10] Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786Google Scholar
[11] Friedman J R, Patel V, Chen W, et al. 2000 Nature 406 43Google Scholar
[12] Martinis J M, Nam S, Aumentado J, Urbina C 2002 Phys. Rev. Lett. 89 117901Google Scholar
[13] Wallraff A, Schuster D I, Blais A, et al. 2004 Nature 431 162Google Scholar
[14] Paik H, Schuster D I, Bishop L S, et al. 2011 Phys. Rev. Lett. 107 240501Google Scholar
[15] Chiorescu I, Nakamura Y, Harmans C J P M, et al. 2003 Science 299 1869Google Scholar
[16] Vion D, Aassime A, Cottet A, et al. 2002 Science 296 886Google Scholar
[17] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502Google Scholar
[18] Yan F, Gustavsson S, Kamal A, et al. 2016 Nat. Commun. 7 12964Google Scholar
[19] You J Q, Hu X, Ashhab S, et al. 2006 Phys. Rev. B 75 140551
[20] Wallraff A, Schuster D I, Blais A, et al. 2005 Phys. Rev. Lett. 95 060501Google Scholar
[21] Reed M D, DiCarlo L, Johnson B R, et al. 2010 Phys. Rev. Lett. 105 173601Google Scholar
[22] Koch J, Yu T M, Gambetta J, et al. 2007 Phys. Rev. A 76 042319Google Scholar
[23] Zhao H, Li T F, Liu Q C, et al. 2014 Chin. Phys. Lett. 31 102101Google Scholar
[24] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜 2014 物理学报 63 220305Google Scholar
Zhao H, Li T F, Liu Q C, Zhang Y S, Liu J S, Chen W 2014 Acta Phys. Sin. 63 220305Google Scholar
Catalog
Metrics
- Abstract views: 6224
- PDF Downloads: 93
- Cited By: 0