Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of fluorine attack induced word-line leakage in 3D NAND flash memory

Fang Yu-Xuan Xia Zhi-Liang Yang Tao Zhou Wen-Xi Huo Zong-Liang

Citation:

Improvement of fluorine attack induced word-line leakage in 3D NAND flash memory

Fang Yu-Xuan, Xia Zhi-Liang, Yang Tao, Zhou Wen-Xi, Huo Zong-Liang
PDF
HTML
Get Citation
  • In this work, the influence of fluorine (F) erosion on tungsten (W) gate process is studied, and the measure to mitigate the word line (WL) leakage resulting from F erosion in 3D NAND flash memory is proposed. As the number of layers in 3D NAND increases, the tungsten (W) gate word line (WL) layer fill process becomes more challenging in the post-gate process. As the fill path length increases, the tungsten gates become more susceptible to voiding during deposition, resulting in the accumulation of fluorine (F) by-products, and causing fluorine attack issues. In particular, under the influence of subsequent high-temperature processes, the by-products containing fluorine can diffuse into the surrounding structure and corrode the surrounding oxide layer. This leads to WL leakage, thereby affecting device yield and reliability. This paper begins by analyzing the microscopic principles of fluorine erosion in 3D NAND. We also propose a low-pressure annealing method to address the issue of fluorine erosion. Then, we conduct the experiments on annealing planar thin film stacks and 3D filled structures under atmospheric condition and low-pressure condition. We use various methods to characterize the concentration and distribution of residual fluorine elements. The experimental results demonstrate that under appropriate conditions, the residual fluorine in the tungsten gate can be effectively released by low-pressure annealing, thus reducing the leakage index of the word line. Additionally, as the outer CH is closer to the fluorine discharge channel, the influence of low-pressure annealing on the outer CH is more pronounced than on the inner CH. The low-pressure annealing can significantly reduce the fluorine content in the tungsten gate. This method can also mitigate the issue of fluorine attack oxides and reducethe WL leakage. Using low-pressure annealing treatment can also enhance the quality of 3D NAND flash technology.
      Corresponding author: Xia Zhi-Liang, ALBERT_XIA@YMTC.COM ; Huo Zong-Liang, huozongliang@ime.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of China (Grant No. 21-02).
    [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609Google Scholar

    [2]

    Kim H, Ahn S J, Shin Y G, Lee K, Jung E 2017 IEEE International Memory Workshop (IMW) Monterey, California, May 14–17, 2017 p1

    [3]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [4]

    Xu Q, Luo J, Wang G, Yang T, Li J, Ye T, Chen D, Zhao C 2015 Microelectron. Eng. 137 43Google Scholar

    [5]

    Moon J, Lee T Y, Ahn H J, Lee T I, Hwang W S, Cho B J 2018 IEEE Trans. Electron Dev. 66 378Google Scholar

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23–26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062Google Scholar

    [8]

    Kim C H, Rho I C, Kim S H, Han I K, Kang H S, Ryu S W, Kim H J 2009 J. Electrochem. Soc. 156 H685Google Scholar

    [9]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16–19, 2016 p313

    [10]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21–23, 2018 p120

    [11]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, December 10–12, 2007 p247

    [12]

    Leusink G, Oosterlaken T, Janssen G, Redelaar S 1993 Thin Solid Films 228 125Google Scholar

    [13]

    Kodas T T, Hampden S M J 2008 The Chemistry of Metal CVD (John Wiley & Sons) p112

    [14]

    Klaus J, Ferro S, George S 2000 Thin Solid Films 360 145Google Scholar

    [15]

    Hidayat R, Chowdhury T, Kim Y, Kim S, Mayangsari T R, Kim S H, Lee W J 2021 Appl. Surf. Sci. 538 148156Google Scholar

    [16]

    Park H, Lee S, Kim H J, Woo D, Lee J M, Yoon E, Lee G D 2018 RSC Adv. 8 39039Google Scholar

    [17]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528Google Scholar

    [18]

    Kalanyan B, Lemaire P C, Atanasov S E, Ritz M J, Parsons G N 2016 Chem. Mater. 28 117Google Scholar

    [19]

    Lee J H, Kim H W, Park I H, Cho S, Lee G S, Kim D H, Yun J G, Kim Y, Lee J D, Park B G 2006 IEEE Nanotechnology Materials and Devices Conference New York, USA, October 22–25, 2006 p638

    [20]

    Yang Y, Zhu H, Meng X, Jin L, Wang C, Wang S, Feng S, Guo C, Zhang Y 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China, October 31–November 3, 2018 p1

  • 图 1  氟攻击问题示意图, 说明 W 栅中剩余 F 对氧化层的腐蚀机理(O-N-O 分别代表氧化物隧穿层、氮化物俘获层和氧化物阻挡层)

    Figure 1.  Schematic diagram of fluorine attacks oxide, illustrating the corrosion mechanism of the oxide layer in the W gate (O-N-O represents the oxide tunneling layer, nitride capture layer and oxide barrier layer, respectively).

    图 2  (a) Y-Z 方向的3D NAND阵列结构示意图; (b) 3D NAND阵列的制造工艺流程(外排孔靠近阵列公共源区, 内排孔远离阵列公共源区)

    Figure 2.  (a) Schematic diagram of the 3D NAND array structure in the Y-Z direction; (b) the manufacturing process of 3D NAND array (the outer hole is close to the array common source area, and the inner hole is far away from the array common source area).

    图 3  (a) W 沉积后退火示意图, 说明了高温热处理可以将剩余 F 排出; (b)常压退火及低压退火后 W 层中的 F元素二次离子质谱分析图

    Figure 3.  (a) Schematic diagram of annealing after W deposition, illustrating the thermal processing can discharge the remaining F element; (b) SIMS of the F element in the W layer after AP and LP

    图 4  氧化物阻挡层中的 F 元素 EELS 映射图 (a)常压退火, 内排孔; (b)常压退火, 外排孔; (c)低压退火, 内排孔; (d)低压退火, 外排孔

    Figure 4.  The EELS map of F element in the oxide barrier layer: (a) AP, inner hole; (b) LP, outer hole; (d) LP, inner hole; (b) AP, outer hole.

    图 5  相同 WL 在常压和低压退火处理后的 WL 漏电指数

    Figure 5.  The WL leakage index of the same WL at AP and LP annealing.

    图 6  常规 TiN 厚度薄膜叠层样品在常压退火、低压退火处理后, 及 TiN 增厚薄膜叠层样品在常压退火处理后的(a)电阻值和(b)片弯曲度

    Figure 6.  (a) The WL sheet resistance and (b) the wafer bow of the sample of initial TiN thickness after AP and LP annealing, and the sample of thickened TiN after AP annealing.

  • [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609Google Scholar

    [2]

    Kim H, Ahn S J, Shin Y G, Lee K, Jung E 2017 IEEE International Memory Workshop (IMW) Monterey, California, May 14–17, 2017 p1

    [3]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [4]

    Xu Q, Luo J, Wang G, Yang T, Li J, Ye T, Chen D, Zhao C 2015 Microelectron. Eng. 137 43Google Scholar

    [5]

    Moon J, Lee T Y, Ahn H J, Lee T I, Hwang W S, Cho B J 2018 IEEE Trans. Electron Dev. 66 378Google Scholar

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23–26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062Google Scholar

    [8]

    Kim C H, Rho I C, Kim S H, Han I K, Kang H S, Ryu S W, Kim H J 2009 J. Electrochem. Soc. 156 H685Google Scholar

    [9]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16–19, 2016 p313

    [10]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21–23, 2018 p120

    [11]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, December 10–12, 2007 p247

    [12]

    Leusink G, Oosterlaken T, Janssen G, Redelaar S 1993 Thin Solid Films 228 125Google Scholar

    [13]

    Kodas T T, Hampden S M J 2008 The Chemistry of Metal CVD (John Wiley & Sons) p112

    [14]

    Klaus J, Ferro S, George S 2000 Thin Solid Films 360 145Google Scholar

    [15]

    Hidayat R, Chowdhury T, Kim Y, Kim S, Mayangsari T R, Kim S H, Lee W J 2021 Appl. Surf. Sci. 538 148156Google Scholar

    [16]

    Park H, Lee S, Kim H J, Woo D, Lee J M, Yoon E, Lee G D 2018 RSC Adv. 8 39039Google Scholar

    [17]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528Google Scholar

    [18]

    Kalanyan B, Lemaire P C, Atanasov S E, Ritz M J, Parsons G N 2016 Chem. Mater. 28 117Google Scholar

    [19]

    Lee J H, Kim H W, Park I H, Cho S, Lee G S, Kim D H, Yun J G, Kim Y, Lee J D, Park B G 2006 IEEE Nanotechnology Materials and Devices Conference New York, USA, October 22–25, 2006 p638

    [20]

    Yang Y, Zhu H, Meng X, Jin L, Wang C, Wang S, Feng S, Guo C, Zhang Y 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China, October 31–November 3, 2018 p1

  • [1] FANG Yuxuan, YANG Yi, XIA Zhiliang, HUO Zongliang. A first-principles study of F adsorption by TiN with its oxide surface in 3D NAND flash memory. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240254
    [2] Chen Yang-Yang, He Yu-Hui, Miao Xiang-Shui, Yang Dao-Hong. 3D-NAND flash memory based neuromorphic computing. Acta Physica Sinica, 2022, 71(21): 210702. doi: 10.7498/aps.71.20220974
    [3] Wu Xiao-Yu, Zhao Hu, Li Zhi. Three-dimensional transmon coherence measurement method based on network analyser. Acta Physica Sinica, 2020, 69(13): 130302. doi: 10.7498/aps.69.20200252
    [4] Hou Zhi-Shan, Xu Shuai, Luo Yang, Li Ai-Wu, Yang Han. Femtosecond laser 3D printing temperature sensitive microsphere lasers. Acta Physica Sinica, 2019, 68(19): 194204. doi: 10.7498/aps.68.20190298
    [5] She Yan-Chao, Zhang Wei-Xi, Wang Ying, Luo Kai-Wu, Jiang Xiao-Wei. Effect of oxygen vacancy defect on leakage current of PbTiO3 ferroelectric thin film. Acta Physica Sinica, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [6] Xiong Yi-Jun, Wang Yan, Wang Qiang, Wang Chun-Qi, Huang Xiao-Zhong, Zhang Fen, Zhou Ding. Structural broadband absorbing metamaterial based on three-dimensional printing technology. Acta Physica Sinica, 2018, 67(8): 084202. doi: 10.7498/aps.67.20172262
    [7] Huang Li-Jing, Ren Nai-Fei, Li Bao-Jia, Zhou Ming. Effects of laser irradiation on the photoelectric properties of thermal-annealed metal/fluorine-doped tin oxide transparent conductive films. Acta Physica Sinica, 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [8] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [9] Wang Zhen, Li Yong-Xin, Xi Xiao-Jian, Lü Lei. Heteoclinic orbit and backstepping control of a 3D chaotic system. Acta Physica Sinica, 2011, 60(1): 010513. doi: 10.7498/aps.60.010513
    [10] Gu Juan, Wang Shan-Ying, Gou Bing-Cong. The geometrical structure, electronic structure and magnetism of bimetallic AunM2 (n=1,2; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni) clusters. Acta Physica Sinica, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [11] Shang Jia-Xiang, Yu Xian-Yang. The site preference of 3d transition metals in NiAl and its effects on bond characters. Acta Physica Sinica, 2008, 57(4): 2380-2385. doi: 10.7498/aps.57.2380
    [12] Jiang Ai-Hua, Xiao Jian-Rong, Wang De-An. Influence of annealing on structure and optical band gap of nitrogen doping fluorinated amorphous carbon films. Acta Physica Sinica, 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [13] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [14] Zhao Xin-Xin, Tao Xiang-Ming, Chen Wen-Bin, Cai Jian-Qiu, Tan Ming-Qiu. Magnetism of 3d transition metal monolayers on Pd(001) surface: density functional theory study. Acta Physica Sinica, 2005, 54(12): 5849-5854. doi: 10.7498/aps.54.5849
    [15] He Li-Ming, Cao Wei, Chen Xue-Qian, Zhu Yun-Xia. Calculation of helium 1D—3D term intervals for 1snd(n=4—11) states. Acta Physica Sinica, 2005, 54(11): 5077-5081. doi: 10.7498/aps.54.5077
    [16] Lü Jin, Xu Xiao-Hong, Wu Hai-Shun. Structure and magnetism of 3d series (TM)4 clusters. Acta Physica Sinica, 2004, 53(4): 1050-1055. doi: 10.7498/aps.53.1050
    [17] LIU JIA-LU, ZHANG TING-QING, LI JIAN-JUN, ZHAO YUAN-FU. SIMS ANALYSIS OF MIGRATION CHARACTERISTICS OF FLUORINE IN BF2+ IMPLANTED POLY-Si GATE UNDER CONVENTIONAL THERMAL ANNEALING. Acta Physica Sinica, 1997, 46(8): 1580-1584. doi: 10.7498/aps.46.1580
    [18] ZHOU YI-YANG. . Acta Physica Sinica, 1995, 44(1): 122-127. doi: 10.7498/aps.44.122
    [19] ZHANG QIANG-JI, CHEN NAI-QUN, HUA ZHONG-YI. INVESTIGATION OF 3d TRANSITION METALS BY IONIZATION LOSS SPECTROSCOPY. Acta Physica Sinica, 1991, 40(8): 1344-1348. doi: 10.7498/aps.40.1344
    [20] GU YI-MING, HUANG MING-ZHU, WANG KE LING. ELECTRONIC STRUCTURES OF 3d-TRANSITION METAL IN GaAs1-xPx ALLOY SYSTEM. Acta Physica Sinica, 1988, 37(1): 11-19. doi: 10.7498/aps.37.11
Metrics
  • Abstract views:  808
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2023
  • Accepted Date:  11 December 2023
  • Available Online:  29 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回