-
Because of its stable propagation characteristics and small attenuation in the medium, low-frequency (LF) electromagnetic wave can penetrate into the sea and underground with small loss. Although its transmission bandwidth is narrow, which limits its application range, it has irreplaceable wide applications in long-distance navigation, communication and frequency release, especially in underwater communication. Therefore, the study of low frequency/very low frequency (LF/VLF) propagation is of great theoretical and military value. In the LF/VLF communication systems, the transmitting antenna is an extremely important part, and its performance has an important influence on the whole system. However, the wavelength of the LF electromagnetic wave is very long. In order to obtain the ideal radiation effect, the traditional method needs a huge transmitting antenna system, which is too large in size and power consumption. Therefore, it will be a disruptive innovation in the field to realize a technology that can significantly reduce the size the existing LF/VLF information network communication system. In view of this, in this paper we propose a kind of LF/VLF signal transmitting antenna in which an excitation device is used to drive the polarization charge of the electret to move mechanically. By accelerating the charge to form a conductive alternating electromagnetic field which can generate and radiate electromagnetic wave, under the excitation of the wave source, it carries the energy and information in the form of energy flow and propagates in a certain medium. Then, through using the magnetic field receiving system to measure the magnetic field vector in the electromagnetic wave, the effective LF/VLF signal can be obtained, thus achieving the high electromagnetic wave effective radiation which overturns the restriction that the antenna size needs to be comparable to the wave length of the radiation signal in the traditional LF navigation communication system. At the same time, an analytical model of magnetic field propagation is established based on this structure, and the influence of antenna size, shape and other relevant parameters on the performance of antenna communication are studied as well. In order to reduce the loss of accuracy and improve the calculation speed, it is necessary to choose the correct analytical model and the appropriate parameters of magnetic field generated by the mechanical antenna according to the actual situation. The research work is of great significance for designing and optimizing mechanical antennas. -
Keywords:
- low-frequency communication /
- mechanical antenna /
- electret /
- theoretical modeling
[1] 陶雯, 陈鼎鼎, 何宁宁 2015 通信技术 48 375Google Scholar
Tao W, Chen D D, He N N 2015 Communication Technology 48 375Google Scholar
[2] 陆建勋 2002 现代军事通信 10 28
Lu J X 2002 Modern Military Communication 10 28
[3] Mark A K, Matt F, Andy H, Erik J, Matthew T W, Michael K, Robert S 2019 Nat. Commun. 10 1715Google Scholar
[4] Valter P, Alessio D A, Marco D, Guido D A, Antonio M, Paolo C 2015 IEEE Trans. Ind. Electron. 63 2457Google Scholar
[5] Bickford J A, McNabb R S, Ward P A, Freeman D K, Weinberg M S 2017 Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1475
[6] Wang C, Cui Y, Wei M S 2019 Proceedings of IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, GA, USA, July 7–12, 2019 p1383
[7] 崔勇, 王琛, 宋晓 2020 自动化学报 45 DOI: 10.16383/j.aas.c190678Google Scholar
Cui Y, Wang C, Song X 2020 Acta Automatica Sinica 45 DOI: 10.16383/j.aas.c190678Google Scholar
[8] 张多加 2019 硕士学位论文 (西安: 西安科技大学)
Zhang D J 2019 M. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)
[9] Bickford J A, Duwel A E, Weinberg M S, et al. 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar
[10] Madanayake A, Choi S, Tarek M, Dharmasena S, Mandal S, Glickstein J, Sehirlioglu A 2017 Proceedings of Moratuwa Engineering Research Conference (MERCon) Moratuwa, Sri Lanka, May 29–31, 2017 p230
[11] Wang Z, Cao Z, Yang F 2018 AIP Adv. 8 025325Google Scholar
[12] 施伟, 周强, 刘斌 2019 物理学报 68 188401Google Scholar
Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar
[13] Prasad M N S, Huang Y, Wang Y E 2017 Proceedings of 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) Montreal, QC, Canada, August 19–26, 2017 p1
[14] Prasad M N S, Selvin S, Tok R U, Huang Y K, Wang Y X 2018 Proceedings of 2018 IEEE Radio and Wireless Symposium (RWS) Anaheim, CA, USA, January 15—18, 2018 p171
[15] Gong S, Liu Y, Liu Y 2018 Prog. Electromagn. Res. M 72 125Google Scholar
[16] 周强, 姚富强, 施伟, 郝振洋, 郑欢, 刘斌, 何攀峰 2020 中国科学: 技术科学 50 69Google Scholar
Zhou Q, Yao F Q, Shi W, Hao Z Y, Zheng H, Liu B, He P F 2020 Scientia Sinica Technologica 50 69Google Scholar
[17] 张林成, 陈钢进, 肖慧明, 蔡本晓, 黄华, 吴玲 2015 物理学报 64 237701Google Scholar
Zhang L C, Chen G J, Xiao H M, Cai B X, Huang H, Wu L 2015 Acta Phys. Sin 64 237701Google Scholar
[18] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 物理学报 64 237702Google Scholar
Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin 64 237702Google Scholar
[19] Wu N, Cheng X, Zhong Q, Zhong J, Li W, Wang B, Hu B, Zhou J 2015 Adv. Funct. Mater. 25 4788Google Scholar
[20] Zhong J, Zhong Q, Chen G, Hu B, Zhao S, Li X, Wu N, Li W, Yu H, Zhou J 2016 Energy Environ. Sci. 9 3085Google Scholar
[21] Chu Y, Zhong J, Liu H 2018 Adv. Funct. Mater. 28 1803413Google Scholar
[22] Xiao H M, Chen G J, Chen X M, Chen Z 2017 Sci. Rep. 7 8443Google Scholar
[23] Chen G J, Lei M F, Xiao H M, Wu L 2014 Chin. Phys. Lett. 31 127702Google Scholar
[24] 夏钟福 2001 驻极体 (北京: 科学出版社) 第1, 2页
Xia Z F 2001 Electrets (Beijing: Science Press) pp1, 2 (in Chinese)
-
-
[1] 陶雯, 陈鼎鼎, 何宁宁 2015 通信技术 48 375Google Scholar
Tao W, Chen D D, He N N 2015 Communication Technology 48 375Google Scholar
[2] 陆建勋 2002 现代军事通信 10 28
Lu J X 2002 Modern Military Communication 10 28
[3] Mark A K, Matt F, Andy H, Erik J, Matthew T W, Michael K, Robert S 2019 Nat. Commun. 10 1715Google Scholar
[4] Valter P, Alessio D A, Marco D, Guido D A, Antonio M, Paolo C 2015 IEEE Trans. Ind. Electron. 63 2457Google Scholar
[5] Bickford J A, McNabb R S, Ward P A, Freeman D K, Weinberg M S 2017 Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1475
[6] Wang C, Cui Y, Wei M S 2019 Proceedings of IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, GA, USA, July 7–12, 2019 p1383
[7] 崔勇, 王琛, 宋晓 2020 自动化学报 45 DOI: 10.16383/j.aas.c190678Google Scholar
Cui Y, Wang C, Song X 2020 Acta Automatica Sinica 45 DOI: 10.16383/j.aas.c190678Google Scholar
[8] 张多加 2019 硕士学位论文 (西安: 西安科技大学)
Zhang D J 2019 M. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)
[9] Bickford J A, Duwel A E, Weinberg M S, et al. 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar
[10] Madanayake A, Choi S, Tarek M, Dharmasena S, Mandal S, Glickstein J, Sehirlioglu A 2017 Proceedings of Moratuwa Engineering Research Conference (MERCon) Moratuwa, Sri Lanka, May 29–31, 2017 p230
[11] Wang Z, Cao Z, Yang F 2018 AIP Adv. 8 025325Google Scholar
[12] 施伟, 周强, 刘斌 2019 物理学报 68 188401Google Scholar
Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar
[13] Prasad M N S, Huang Y, Wang Y E 2017 Proceedings of 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) Montreal, QC, Canada, August 19–26, 2017 p1
[14] Prasad M N S, Selvin S, Tok R U, Huang Y K, Wang Y X 2018 Proceedings of 2018 IEEE Radio and Wireless Symposium (RWS) Anaheim, CA, USA, January 15—18, 2018 p171
[15] Gong S, Liu Y, Liu Y 2018 Prog. Electromagn. Res. M 72 125Google Scholar
[16] 周强, 姚富强, 施伟, 郝振洋, 郑欢, 刘斌, 何攀峰 2020 中国科学: 技术科学 50 69Google Scholar
Zhou Q, Yao F Q, Shi W, Hao Z Y, Zheng H, Liu B, He P F 2020 Scientia Sinica Technologica 50 69Google Scholar
[17] 张林成, 陈钢进, 肖慧明, 蔡本晓, 黄华, 吴玲 2015 物理学报 64 237701Google Scholar
Zhang L C, Chen G J, Xiao H M, Cai B X, Huang H, Wu L 2015 Acta Phys. Sin 64 237701Google Scholar
[18] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 物理学报 64 237702Google Scholar
Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin 64 237702Google Scholar
[19] Wu N, Cheng X, Zhong Q, Zhong J, Li W, Wang B, Hu B, Zhou J 2015 Adv. Funct. Mater. 25 4788Google Scholar
[20] Zhong J, Zhong Q, Chen G, Hu B, Zhao S, Li X, Wu N, Li W, Yu H, Zhou J 2016 Energy Environ. Sci. 9 3085Google Scholar
[21] Chu Y, Zhong J, Liu H 2018 Adv. Funct. Mater. 28 1803413Google Scholar
[22] Xiao H M, Chen G J, Chen X M, Chen Z 2017 Sci. Rep. 7 8443Google Scholar
[23] Chen G J, Lei M F, Xiao H M, Wu L 2014 Chin. Phys. Lett. 31 127702Google Scholar
[24] 夏钟福 2001 驻极体 (北京: 科学出版社) 第1, 2页
Xia Z F 2001 Electrets (Beijing: Science Press) pp1, 2 (in Chinese)
Catalog
Metrics
- Abstract views: 10084
- PDF Downloads: 228
- Cited By: 0