Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A

Chen Xie-Yu Mou Mao-Lin Su Chun-Yan Chen Shao-Yong Tang Chang-Jian

Citation:

Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A

Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian
PDF
HTML
Get Citation
  • Resonant magnetic perturbation (RMP), generated by externally applied magnetic perturbation coils, is an important method of controlling plasma edge localized mode. Many experiments have shown that RMP can effectively mitigate/suppress edge localized mode, but its intrinsic physical mechanism is not completely clear. The response of plasma to RMP is the key to understanding the RMP physics. In the presence of RMP, the circumferential symmetry of the tokamak magnetic field will be broken, forming a new three-dimensional(3D) equilibrium, and this process is called the plasma response to RMP. Currently, the parameter range and control effect of RMPs to control edge localized mode on different devices are quite different, implying that the plasma response to RMPs has different response results in different parameter ranges on different devices. Therefore, it is necessary to study the RMP response characteristics of specific devices.In this work, the effect of the plasma rotation frequency on the linear response process of plasma to the resonant magnetic perturbations is investigated in the framework of MARS-F in the HL-2A configuration, and the physical reasons are analyzed in detail. It is found that the shielding and amplification effects in plasma response do not change linearly with plasma rotation frequency, since the plasma resistivity plays an important role. The shielding effect for the magnetic perturbation on the rational surface is enhanced with the increase of the rotation frequency in the high rotation frequency range. However, this rule no longer holds true in the low rotation frequency range due to the deviation of the strongest shielding position from the rational surface caused by the plasma resistivity. As for the amplification effect, the resistivity weakens the amplification effect of plasma response due to the dissipation of induced current. The variation trend of the amplification effect with the rotation frequency and resistivity is consistent with that of the core-kink response, which indicates that the amplification effect of the magnetic perturbation is mainly caused by the core-kink response.
      Corresponding author: Mou Mao-Lin, mlmou@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905152, 11775154) and the Post-doctoral Research and Development Fund of Sichuan University, China (Grant No. 2020SCU12068)
    [1]

    Evans T E, Moyer R A, Watkins J G, Osborne T H, Thomas P R, Bécoulet M, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, Jackson G L, LaHaye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty G L, Reimerdes H, Rhodes T L, Rudakov D L, Schaffer M J, Wade M, Wang G 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [2]

    Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P 2010 Nucl. Fusion 50 034008Google Scholar

    [3]

    Kirk A, Liu Yueqiang, Nardon E, Tamain P, Cahyna P, Chapman I, Denner P, Meyer H, Mordijck S, Temple D 2011 Plasma Phys. Controlled Fusion 53 065011Google Scholar

    [4]

    Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Becoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [5]

    Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004Google Scholar

    [6]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak Jong Gu, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004Google Scholar

    [7]

    Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [8]

    Liu Y Q, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y W, Suttrop W, Yang X, Zhou L N 2016 Plasma Phys. Controlled Fusion 58 114005Google Scholar

    [9]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y W, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L N 2017 Phys. Plasmas 24 056111Google Scholar

    [10]

    Fitzpatrick, Richard 2014 Phys. Plasmas 21 092513Google Scholar

    [11]

    Becoulet M, Huysmans G, Garbet X, Nardon E, Howell D, Garofalo A, Schaffer M, Evans T, Shaing K, Cole A, Park J K, Cahyna P 2009 Nucl. Fusion 49 085011Google Scholar

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [13]

    Kirk A, Liu Y Q, Martin R, Cunningham G, Howell D 2014 Plasma Phys. Controlled Fusion 56 104003Google Scholar

    [14]

    Ferraro N M 2012 Phys. Plasmas 19 056105Google Scholar

    [15]

    Ryan D A, Liu Y Q, Kirk A, Suttrop W, Dudson B, Dunne M, Fischer R, Fuchs J C, Garcia-Munoz M, Kurzan B, Piovesan P, Reinke M, Willensdorfer M 2015 Plasma Phys. Controlled Fusion 57 095008Google Scholar

    [16]

    Haskey S R, Lanctot M J, Liu Y Q, Hanson J M, Blackwell B D, Nazikian R 2014 Plasma Phys. Controlled Fusion 56 035005Google Scholar

    [17]

    Liu Y, Kirk A, Gribov Y, Gryaznevich M P, Hender T C, Nardon E 2011 Nucl. Fusion 51 083002Google Scholar

    [18]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [19]

    Liu Y Q, Ryan D, Kirk A, Li Li, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M 2016 Nucl. Fusion 56 056015Google Scholar

    [20]

    Kirk A, Suttrop W, Chapman I T, Liu Yueqiang, Scannell R, Thornton A J, Orte L Barrera, Cahyna P, Eich T, Fischer R, Fuchs C, Ham C, Harrison J R, Jakubowski M W, Kurzan B 2015 Nucl. Fusion 55 043011Google Scholar

    [21]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C 2016 Nucl. Fusion 56 126007Google Scholar

    [22]

    Yang X, Sun Y W, Liu Y Q, Gu S, Liu Y, Wang H H, Zhou L N, Guo W F 2016 Plasma Phys. Controlled Fusion 58 114006Google Scholar

    [23]

    Reimerdes H, Bialek J, Chance M S, Chu M S, Garofalo A M, Gohil P, In Y, Jackson G L, Jayakumar R J, Jensen T H, Kim J S, Haye R J La, Liu Y Q, Menard J E, Navratil G A, Okabayashi M 2005 Nucl. Fusion 45 368Google Scholar

    [24]

    Gryaznevich M P, Hender T C, Howell D F, Challis C D, Koslowski H R, Gerasimov S, Joffrin E, Liu Y Q, Saarelma S 2008 Plasma Phys. Controlled Fusion 50 124030Google Scholar

    [25]

    Haskey S R, Lanctot M J, Liu Y Q, Paz-Soldan C, King J D, Blackwell B D, Schmitz O 2015 Plasma Phys. Controlled Fusion 57 025015Google Scholar

    [26]

    Liu Y, Saarelma S, Gryaznevich M P, Hender T C, Howell D F 2010 Plasma Phys. Controlled Fusion 52 045011Google Scholar

    [27]

    Kim J Y, Kim S S, Jhang H 2016 Phys. Plasmas 23 092502Google Scholar

  • 图 1  HL-2A最外闭合磁面(红线)和RMP线圈位置(蓝线)

    Figure 1.  The location and size of the RMP coils in HL-2A shown on the poloidal plane together with the last closed flux surface.

    图 2  HL-2A等离子体平衡的径向剖面 (a)归一化密度; (b)安全因子; (c)归一化等离子体环向旋转; (d)归一化等离子体电阻率

    Figure 2.  The radial profiles of the plasma equilibrium used in this study: (a) The normalized density; (b) the safety factor; (c) the plasma toroidal rotation, normalized to the Alfven frequency at the plasma centre; (d) the normalized plasma resistivity (vertical lines indicate the radial locations of rational surfaces for q = 2, 3, 4).

    图 3  奇宇称时(a)真空径向场与(b)总径向场的极向谱

    Figure 3.  Comparison of the poloidal spectra in the full plasma region, between (a) The vacuum field and (b) the total field including the plasma response, for the odd parity of the coil current.

    图 4  奇宇称时等离子体径向位移的极向傅里叶分量幅值沿极向磁通的变化

    Figure 4.  Radial profiles of poloidal harmonic of the computed plasma normal displacement triggered by the odd parity coils.

    图 5  理想等离子体响应($ {\eta }_{0}=0 $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

    Figure 5.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in ideal plasma response $ ({\eta }_{0}=0) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

    图 6  电阻等离子体响应($ {\eta }_{0}=1.7524\times {10}^{-8} $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

    Figure 6.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in resistive plasma response $ ({\eta }_{0}=1.7524\times {10}^{-8}) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

    图 7  不同电阻值下有理面上总径向场幅值随旋转频率的变化 (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. 图中绿色虚线代表真空场条件下对应分量在有理面上的幅值

    Figure 7.  The amplitude of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field on the rational surfaces with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. The green dashed lines are the corresponding amplitude of the resonant poloidal Fourier harmonics produced by RMP coils on the rational surfaces.

    图 8  不同电阻值下总径向场的极向傅里叶分量最大值随旋转频率的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的最大值

    Figure 8.  The maximal amplitude of the poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding maximal amplitude of the poloidal Fourier harmonics produced by RMP coils.

    图 9  不同电阻值下等离子体边缘剥离响应(peeling)和芯部扭曲响应(kink)随旋转频率的变化

    Figure 9.  The computed amplitude of the core-kink (blue dashed lines) and the edge-peeling (red solid lines) components of the plasma response with varying plasma toroidal rotation frequency and resistivity.

  • [1]

    Evans T E, Moyer R A, Watkins J G, Osborne T H, Thomas P R, Bécoulet M, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, Jackson G L, LaHaye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty G L, Reimerdes H, Rhodes T L, Rudakov D L, Schaffer M J, Wade M, Wang G 2004 Phys. Rev. Lett. 92 235003Google Scholar

    [2]

    Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P 2010 Nucl. Fusion 50 034008Google Scholar

    [3]

    Kirk A, Liu Yueqiang, Nardon E, Tamain P, Cahyna P, Chapman I, Denner P, Meyer H, Mordijck S, Temple D 2011 Plasma Phys. Controlled Fusion 53 065011Google Scholar

    [4]

    Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Becoulet M 2007 Phys. Rev. Lett. 98 265004Google Scholar

    [5]

    Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004Google Scholar

    [6]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak Jong Gu, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004Google Scholar

    [7]

    Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [8]

    Liu Y Q, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y W, Suttrop W, Yang X, Zhou L N 2016 Plasma Phys. Controlled Fusion 58 114005Google Scholar

    [9]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y W, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L N 2017 Phys. Plasmas 24 056111Google Scholar

    [10]

    Fitzpatrick, Richard 2014 Phys. Plasmas 21 092513Google Scholar

    [11]

    Becoulet M, Huysmans G, Garbet X, Nardon E, Howell D, Garofalo A, Schaffer M, Evans T, Shaing K, Cole A, Park J K, Cahyna P 2009 Nucl. Fusion 49 085011Google Scholar

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502Google Scholar

    [13]

    Kirk A, Liu Y Q, Martin R, Cunningham G, Howell D 2014 Plasma Phys. Controlled Fusion 56 104003Google Scholar

    [14]

    Ferraro N M 2012 Phys. Plasmas 19 056105Google Scholar

    [15]

    Ryan D A, Liu Y Q, Kirk A, Suttrop W, Dudson B, Dunne M, Fischer R, Fuchs J C, Garcia-Munoz M, Kurzan B, Piovesan P, Reinke M, Willensdorfer M 2015 Plasma Phys. Controlled Fusion 57 095008Google Scholar

    [16]

    Haskey S R, Lanctot M J, Liu Y Q, Hanson J M, Blackwell B D, Nazikian R 2014 Plasma Phys. Controlled Fusion 56 035005Google Scholar

    [17]

    Liu Y, Kirk A, Gribov Y, Gryaznevich M P, Hender T C, Nardon E 2011 Nucl. Fusion 51 083002Google Scholar

    [18]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681Google Scholar

    [19]

    Liu Y Q, Ryan D, Kirk A, Li Li, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M 2016 Nucl. Fusion 56 056015Google Scholar

    [20]

    Kirk A, Suttrop W, Chapman I T, Liu Yueqiang, Scannell R, Thornton A J, Orte L Barrera, Cahyna P, Eich T, Fischer R, Fuchs C, Ham C, Harrison J R, Jakubowski M W, Kurzan B 2015 Nucl. Fusion 55 043011Google Scholar

    [21]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C 2016 Nucl. Fusion 56 126007Google Scholar

    [22]

    Yang X, Sun Y W, Liu Y Q, Gu S, Liu Y, Wang H H, Zhou L N, Guo W F 2016 Plasma Phys. Controlled Fusion 58 114006Google Scholar

    [23]

    Reimerdes H, Bialek J, Chance M S, Chu M S, Garofalo A M, Gohil P, In Y, Jackson G L, Jayakumar R J, Jensen T H, Kim J S, Haye R J La, Liu Y Q, Menard J E, Navratil G A, Okabayashi M 2005 Nucl. Fusion 45 368Google Scholar

    [24]

    Gryaznevich M P, Hender T C, Howell D F, Challis C D, Koslowski H R, Gerasimov S, Joffrin E, Liu Y Q, Saarelma S 2008 Plasma Phys. Controlled Fusion 50 124030Google Scholar

    [25]

    Haskey S R, Lanctot M J, Liu Y Q, Paz-Soldan C, King J D, Blackwell B D, Schmitz O 2015 Plasma Phys. Controlled Fusion 57 025015Google Scholar

    [26]

    Liu Y, Saarelma S, Gryaznevich M P, Hender T C, Howell D F 2010 Plasma Phys. Controlled Fusion 52 045011Google Scholar

    [27]

    Kim J Y, Kim S S, Jhang H 2016 Phys. Plasmas 23 092502Google Scholar

  • [1] Sun You-Wen, Qiu Zhi-Yong, Wan Bao-Nian. Current status and prospects of burning plasma physics in magnetically confined fusion. Acta Physica Sinica, 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [3] Jin Yi-Fei, Zhang Hong-Ming, Yin Xiang-Hui, Lü Bo, Cheonho Bae, Ye Kai-Xuan, Sheng Hui, Wang Shi-Fan, Zhao Hai-Lin, Gu Shuai, Yuan Hong, Lin Zi-Chao, Fu Sheng-Yu, Lu Di-An, Fu Jia, Wang Fu-Di. Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST. Acta Physica Sinica, 2024, 73(24): 245203. doi: 10.7498/aps.73.20241357
    [4] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [5] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [6] Pan Shan-Shan, Duan Yan-Min, Xu Li-Qing, Chao Yan, Zhong Guo-Qiang, Sun You-Wen, Sheng Hui, Liu Hai-Qing, Chu Yu-Qi, Lü Bo, Jin Yi-Fei, Hu Li-Qun. Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak. Acta Physica Sinica, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [7] Zhou Li-Na, Hu Han-Qing, Liu Yue-Qiang, Duan Ping, Chen Long, Zhang Han-Yu. Modelling study of fluid and kinetic responses of plasmas to resonant magnetic perturbation. Acta Physica Sinica, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [8] Li Chun-Yu, Hao Guang-Zhou, Liu Yue-Qiang, Wang Lian, Liu Yi-Hui-Zi. Influence of toroidal rotation on plasma response to external RMP fields in tokamak. Acta Physica Sinica, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [9] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [10] Hao Bao-Long, Chen Wei, Li Guo-Qiang, Wang Xiao-Jing, Wang Zhao-Liang, Wu Bin, Zang Qing, Jie Yin-Xian, Lin Xiao-Dong, Gao Xiang, CFETR TEAM. Numerical simulation of synergistic effect of neoclassical tearing mode and toroidal field ripple on alpha particle loss in China Fusion Engineering Testing Reactor. Acta Physica Sinica, 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [11] Su Chun-Yan, Mou Mao-Lin, Chen Shao-Yong, Guo Wen-Ping, Tang Chang-Jian. Field amplification effect of resonant magnetic perturbation on ion orbits in tokamak plasma. Acta Physica Sinica, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [12] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [13] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [14] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [15] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [16] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [17] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [18] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [19] WANG WEN-HAO, YU CHANG-XUAN, XU YU-HONG, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. MEASUREMENT OF EDGE PLASMA PARAMETERS AND THEIR ELECTROSTATIC FLUCTUATIONS ON THE HT-7 SUPERCONDUCTING TOKAMAK. Acta Physica Sinica, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [20] ZHANG XIAN-MEI, WAN BAO-NIAN, RUAN HUAI-LIN, WU ZHEN-WEI. STUDY OF THE ELECTRON THERMAL CONDUCTIVITY OF THE OHMICALLY HEATED DISCHARGES IN THE HT-7 TOKAMAK. Acta Physica Sinica, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
Metrics
  • Abstract views:  6080
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2020
  • Accepted Date:  02 June 2020
  • Available Online:  16 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回