Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells of inverted metamorphic four junction (IMM4J) solar cells under 1 MeV electron irradiation

Zhang Yan-Qing Qi Chun-Hua Zhou Jia-Ming Liu Chao-Ming Ma Guo-Liang Tsai Hsu-Sheng Wang Tian-Qi Huo Ming-Xue

Citation:

Thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells of inverted metamorphic four junction (IMM4J) solar cells under 1 MeV electron irradiation

Zhang Yan-Qing, Qi Chun-Hua, Zhou Jia-Ming, Liu Chao-Ming, Ma Guo-Liang, Tsai Hsu-Sheng, Wang Tian-Qi, Huo Ming-Xue
PDF
HTML
Get Citation
  • In this work, thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells for inverted metamorphic four junction (IMM4J) solar cells after being irradiated by 1 MeV electrons are investigated by using light I-V characteristic, dark I-V characteristic and spectral response. Annealing temperature range is 60–180 ℃ and annealing time is 0-180 min. The results indicate that the open-circuit voltage Voc, short-circuit current Isc, and maximum power Pmax of two sub-cells are gradually recovered with annealing time increasing, and the rate of recovery increases with annealing temperature increasing. Besides, the recovery rate of InGaAs (1.0 eV) sub-cell is less than that of InGaAs (0.7 eV) sub-cell under the same annealing temperature and time. Double exponential model is used to fit the dark I-V curve for the key parameters (the serial resistant Rs, the parallel resistant Rsh, the diffusion current Is1 and the recombination current Is2). It is found that Rs, Is1 and Is2 of two sub-cells decrease gradually and Rsh increases during annealing and the rate of recovery increases with annealing temperature rising. However, the recovery of Is1 and Is2 of InGaAs(1.0 eV) are much greater than that of InGaAs(0.7 eV). The equivalent model between short-circuit current density (Jsc) and defect concentration (N) induced by irradiation and annealing is established. N changes follow the first reaction kinetics, and the rate constant follows the Arrhenius equation with the annealing temperature. Therefore, the thermal annealing activation energy of InGaAs(1.0 eV) and InGaAs(0.7 eV) sub-cells are 0.38 eV and 0.26 eV, respectively. These efforts will contribute to the IMM4J solar cells, in particular, to space-based applications.
      Corresponding author: Qi Chun-Hua, qichunhua@hit.edu.cn ; Liu Chao-Ming, cmliu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805045, 61704039, 61771167, 11775061), the State Key Laboratory for Environmental Simulation and Effects of Intense Pulsed Radiation, China (Grant Nos. SKLIPR2015, SKLIPR1912), and the Research and Innovation Fund of Harbin Institute of Technology, China (Grant Nos. HIT.NSRIF.2019007, HIT.NSRIF.20190028)
    [1]

    Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar

    [2]

    Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar

    [3]

    France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar

    [4]

    宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 物理学报 66 188801Google Scholar

    Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar

    [5]

    Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125

    [6]

    卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688

    Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688

    [7]

    Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790

    [8]

    Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar

    [9]

    Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562

    [10]

    Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar

    [11]

    Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087

    [12]

    Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085

    [13]

    Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar

    [14]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [15]

    Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710

    [16]

    Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar

    [17]

    Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar

    [18]

    Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar

    [19]

    Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar

    [20]

    Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar

    [21]

    Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar

    [22]

    Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203

  • 图 1  InGaAs (1.0 eV)和InGaAs (0.7 eV) 子电池结构示意图 (a) InGaAs (1.0 eV); (b) InGaAs (0.7 eV)

    Figure 1.  Configurations of the InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells: (a) InGaAs (1.0 eV); (b) InGaAs (0.7 eV).

    图 2  InGaAs(1.0 eV)和InGaAs(0.7 eV)子电池I-V特性曲线 (a) InGaAs (1.0 eV); (b) InGaAs (0.7 eV)

    Figure 2.  IV curves of the InGaAs(1.0 eV) and InGaAs (0.7 eV) sub-cells: (a) InGaAs(1.0 eV); (b) InGaAs (0.7 eV).

    图 3  1 MeV电子在InGaAs (1.0 eV)和InGaAs (0.7 eV)子电池中运动轨迹 (a) InGaAs (1.0 eV); (b) InGaAs(0.7 eV)

    Figure 3.  The trajectory of 1 MeV electron in InGaAs (1.0 eV) and InGaAs (0.7 eV) sub cells: (a) InGaAs(1.0 eV) ; (b) InGaAs (0.7 eV).

    图 4  AFM测试1 MeV电子辐照InGaAs子电池前后表面形貌及横向剖面对比图 (a)未辐照子电池; (b)辐照1 × 1015 cm–2后子电池; (c)横向剖面图

    Figure 4.  Surface morphology and cross section of InGaAs sub-cell before and after 1 MeV electron irradiation by AFM: (a) The unirradiated sub-cell; (b) the sub-cell after 1 × 1015 cm–2 electron irradiation; (c) the cross section comparison.

    图 5  不同温度退火不同时间下两种InGaAs子电池Voc, IscPmax变化曲线

    Figure 5.  Normalized Voc, Isc and Pmax curves of InGaAs sub-cells anneal at different annealing temperatures for different times.

    图 6  InGaAs (1.0 eV)子电池不同温度退火不同时间的EQE曲线

    Figure 6.  EQE curves of InGaAs (1.0 eV) sub-cells anneal at different annealing temperatures for different times.

    图 7  不同温度退火不同时间的InGaAs (0.7 eV)子电池EQE曲线

    Figure 7.  EQE curves of InGaAs (0.7 eV) sub-cells anneal at different annealing temperatures for different times.

    图 8  两种InGaAs子电池退火不同时间拟合所得Rs, Rsh, Is1Is2的变化曲线图

    Figure 8.  Rs, Rsh, Is1 and Is2 curves of InGaAs sub-cells annealing at different temperatures.

    图 9  缺陷浓度变化系数对数ln(α)与温度倒数(1/T)的关系曲线

    Figure 9.  Curve of logarithm of the defect concentration change coefficient (ln(α)) with reciprocal of temperature (1/T).

    表 1  1 MeV辐照前后InGaAs(1.0 eV)子电池的Voc, IscPmax

    Table 1.  Voc, Isc and Pmax of InGaAs(1.0 eV) sub-cells before and after electron irradiated.

    InGaAs (1.0 eV)Voc/VIsc/mAPmax/mW
    未辐照0.508918.257.30
    辐照后0.309311.573.56
    剩余率60.8%63.4%48.8%
    DownLoad: CSV

    表 2  1 MeV辐照前后InGaAs (0.7 eV)子电池的Voc, IscPmax

    Table 2.  Voc, Isc and Pmax of InGaAs (0.7 eV) sub-cells before and after electron irradiated.

    InGaAs (0.7 eV)Voc/VIsc/mAPmax/mW
    未辐照0.252911.6601.940
    辐照后0.14286.9500.653
    剩余率56.5%59.6%33.7%
    DownLoad: CSV

    表 3  辐照前后InGaAs (1.0 eV)子电池Rs, Rsh, Is1Is2

    Table 3.  Rs, Rsh, Is1 and Is2 of InGaAs (1.0 eV) sub-cells before and after electron irradiated.

    InGaAs (1.0 eV)RsRshIs1/AIs2/A
    未辐照1.54.3 × 1043.6 × 10–74.2 × 10–7
    辐照后6.25.3 × 1036.4 × 10–56.5 × 10–5
    剩余率4.13%0.123%178%155%
    DownLoad: CSV

    表 4  辐照前后InGaAs (0.7 eV)子电池的Rs, Rsh, Is1Is2

    Table 4.  Rs, Rsh, Is1 and Is2 of InGaAs (0.7 eV) sub-cells before and after electron irradiated.

    InGaAs (0.7 eV)RsRshIs1/AIs2/A
    未辐照2.91.3 × 1042.7 × 10–53.3 × 10–5
    辐照后7.51.4 × 1031.4 × 10–41.9 × 10–4
    剩余率2.59%0.108%5.19%5.76%
    DownLoad: CSV

    表 5  辐照及热退火过程中InGaAs (1.0 eV)子电池Jsc变化

    Table 5.  Jsc of InGaAs (1.0 eV) sub-cell in irradiation and thermal annealing.

    InGaAs (1.0 eV) 退火温度未辐照Jsc/mA)退火时间 Jsc/min·mA–1
    03510153060120180
    60 ℃13.5710.2610.2610.2810.2910.3110.3810.4110.4810.53
    90 ℃13.3110.1910.2110.2310.2810.3010.3410.3910.4110.46
    120 ℃13.7510.4110.4610.4910.5710.6510.7810.7910.8110.84
    150 ℃13.5110.3110.4310.5910.8411.0711.6811.7311.8311.98
    180 ℃13.5510.3810.7210.9611.4611.9012.5012.6712.8512.88
    DownLoad: CSV

    表 6  辐照及热退火过程中InGaAs (0.7 eV)子电池Jsc变化

    Table 6.  Jsc of InGaAs (0.7 eV) sub-cell in irradiation and thermal annealing.

    InGaAs (0.7 eV) 退火温度未辐照 Jsc/mA退火时间 Jsc/min·mA–1
    03510153060120180
    60 ℃8.176.276.276.276.316.326.366.406.456.47
    90 ℃8.336.466.476.486.536.536.556.596.636.67
    120 ℃8.286.196.216.226.246.286.336.356.426.44
    150 ℃8.246.156.186.216.256.296.456.716.796.82
    180 ℃8.256.26.256.36.446.516.87.347.597.69
    DownLoad: CSV

    表 7  不同退火温度下InGaAs (1.0 eV)和InGaAs (0.7 eV)子电池缺陷浓度变化系数α拟合值

    Table 7.  Fitting value of the variation defect concentration coefficient(α) of InGaAs sub-cell at different annealing temperatures.

    退火温度α[InGaAs (1.0 eV)/s–1]α[InGaAs (0.7 eV)/s–1]
    60 ℃1.74 × 10–31.47 × 10–3
    90 ℃4.09 × 10–32.43 × 10–3
    120 ℃7.33 × 10–34.70 × 10–3
    150 ℃2.52 × 10–27.38 × 10–3
    180 ℃5.72 × 10–21.82 × 10–2
    DownLoad: CSV
  • [1]

    Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar

    [2]

    Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar

    [3]

    France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar

    [4]

    宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 物理学报 66 188801Google Scholar

    Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar

    [5]

    Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125

    [6]

    卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688

    Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688

    [7]

    Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790

    [8]

    Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar

    [9]

    Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562

    [10]

    Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar

    [11]

    Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087

    [12]

    Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085

    [13]

    Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar

    [14]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [15]

    Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710

    [16]

    Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar

    [17]

    Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar

    [18]

    Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar

    [19]

    Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar

    [20]

    Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar

    [21]

    Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar

    [22]

    Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203

  • [1] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] Liu Hui-Zhen, Liu Bei, Dong Jia-Bin, Li Jian-Peng, Cao Zi-Xiu, Liu Yue, Meng Ru-Tao, Zhang Yi. Regulation of solar cell performance by cadmium sulfide/copper-based thin film heterojunction annealing under different atmospheres. Acta Physica Sinica, 2023, 72(8): 088802. doi: 10.7498/aps.72.20230105
    [3] Gao Xu-Dong, Yang De-Cao, Wei Wen-Jing, Li Gong-Ping. Simulation study of electron beam irradiation damage to ZnO and TiO2. Acta Physica Sinica, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] Gu Zhao-Qiao, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Zhang Hong, Ju An-An, Liu Yi-Tian. Total dose effect and annealing characteristics of silicon carbide field effect transistor devices under different stresses. Acta Physica Sinica, 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [5] Li Jun-Wei, Wang Zu-Jun, Shi Cheng-Ying, Xue Yuan-Yuan, Ning Hao, Xu Rui, Jiao Qian-Li, Jia Tong-Xuan. Modeling and simulating of radiation effects on the performance degradation of GaInP/GaAs/Ge triple-junction solar cells induced by different energy protons. Acta Physica Sinica, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [6] Gao Yang, Chandan Pandey, Kong De-Yin, Wang Chun, Nie Tian-Xiao, Zhao Wei-Sheng, Miao Jun-Gang, Wang Li, Wu Xiao-Jun. Annealing effect on terahertz emission enhancement from ferromagnetic heterostructures. Acta Physica Sinica, 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [7] Feng Guo-Bao, Cao Meng, Cui Wan-Zhao, Li Jun, Liu Chun-Liang, Wang Fang. Transient characteristics of discharge of polymer sample after electon-beam irradiation. Acta Physica Sinica, 2017, 66(6): 067901. doi: 10.7498/aps.66.067901
    [8] Song Ming-Hui, Wang Du-Xiang, Bi Jing-Feng, Chen Wen-Jun, Li Ming-Yang, Li Sen-Lin, Liu Guan-Zhou, Wu Chao-Yu. Inverted metamorphic triple-junction solar cell and its radiation hardness for space applications. Acta Physica Sinica, 2017, 66(18): 188801. doi: 10.7498/aps.66.188801
    [9] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [10] Ma Guo-Liang, Yang Jian-Qun, Li Xing-Ji, Liu Chao-Ming, Hou Chun-Feng. Tensile deformation mechanism of PE/CNTs irradiated by electrons. Acta Physica Sinica, 2016, 65(17): 178104. doi: 10.7498/aps.65.178104
    [11] Ma Guo-Liang, Li Xing-Ji, Yang Jian-Qun, Liu Chao-Ming, Hou Chun-Feng. Melting and crystallization behaviours of the electrons irradiated LDPE/MWCNTs composites. Acta Physica Sinica, 2016, 65(20): 208101. doi: 10.7498/aps.65.208101
    [12] Qi Jia-Hong, Hu Jian-Min, Sheng Yan-Hui, Wu Yi-Yong, Xu Jian-Wen, Wang Yue-Yuan, YANG Xiao-Ming, Zhang Zi-Rui, Zhou Yang. Carrier transport mechanism of GaAs/Ge solar cells under electrons irradiation. Acta Physica Sinica, 2015, 64(10): 108802. doi: 10.7498/aps.64.108802
    [13] Quan Rong-Hui, Han Jian-Wei, Zhang Zhen-Long. Macroscopic model of internal discharging in polymer under electron beam irradiation. Acta Physica Sinica, 2013, 62(24): 245205. doi: 10.7498/aps.62.245205
    [14] Wang Kai-Yue, Li Zhi-Hong, Gao Kai, Zhu Yu-Mei. Photoluminescence studies of electron irradiated diamond. Acta Physica Sinica, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [15] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [16] Hu Jian-Min, Wu Yi-Yong, Qian Yong, Yang De-Zhuang, He Shi-Yu. Damage of electron irradiation to the GaInP/GaAs/Ge triple-junction solar cell. Acta Physica Sinica, 2009, 58(7): 5051-5056. doi: 10.7498/aps.58.5051
    [17] Wang Bo, Zhao You-Wen, Dong Zhi-Yuan, Deng Ai-Hong, Miao Shan-Shan, Yang Jun. Electron irradiation induced defects in high temperature annealed InP single crystal. Acta Physica Sinica, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [18] Feng Xi-Qi, Tong B.Tang. Dipolar defect complexes in single-crystal PbWO4. Acta Physica Sinica, 2003, 52(8): 2066-2074. doi: 10.7498/aps.52.2066
    [19] Wang Zhen-Xia, Li Xue-Peng, Yu Li-Ping, Ma Yu-Gang, He Guo-Wei, Hu Gang, Chen Yi, Duan Xiao-Feng. . Acta Physica Sinica, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [20] WEI GUANG-PU. X-RAY IRRADIATION EFFECT IN a-Si SOLAR CELL AND ITS BELOW-GAP PHOTOCURRENT SPECTROSCOPY OBSERVATION. Acta Physica Sinica, 1992, 41(3): 485-490. doi: 10.7498/aps.41.485
Metrics
  • Abstract views:  6347
  • PDF Downloads:  95
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2020
  • Accepted Date:  07 July 2020
  • Available Online:  09 November 2020
  • Published Online:  20 November 2020

/

返回文章
返回