-
In this work, thermal annealing effects of InGaAs (1.0 eV) and InGaAs (0.7 eV) sub-cells for inverted metamorphic four junction (IMM4J) solar cells after being irradiated by 1 MeV electrons are investigated by using light I-V characteristic, dark I-V characteristic and spectral response. Annealing temperature range is 60–180 ℃ and annealing time is 0-180 min. The results indicate that the open-circuit voltage Voc, short-circuit current Isc, and maximum power Pmax of two sub-cells are gradually recovered with annealing time increasing, and the rate of recovery increases with annealing temperature increasing. Besides, the recovery rate of InGaAs (1.0 eV) sub-cell is less than that of InGaAs (0.7 eV) sub-cell under the same annealing temperature and time. Double exponential model is used to fit the dark I-V curve for the key parameters (the serial resistant Rs, the parallel resistant Rsh, the diffusion current Is1 and the recombination current Is2). It is found that Rs, Is1 and Is2 of two sub-cells decrease gradually and Rsh increases during annealing and the rate of recovery increases with annealing temperature rising. However, the recovery of Is1 and Is2 of InGaAs(1.0 eV) are much greater than that of InGaAs(0.7 eV). The equivalent model between short-circuit current density (Jsc) and defect concentration (N) induced by irradiation and annealing is established. N changes follow the first reaction kinetics, and the rate constant follows the Arrhenius equation with the annealing temperature. Therefore, the thermal annealing activation energy of InGaAs(1.0 eV) and InGaAs(0.7 eV) sub-cells are 0.38 eV and 0.26 eV, respectively. These efforts will contribute to the IMM4J solar cells, in particular, to space-based applications.
-
Keywords:
- inverted metamorphic four junction solar cells /
- electron irradiation /
- annealing effects /
- activation energy of thermal annealing
[1] Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar
[2] Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar
[3] France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar
[4] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 物理学报 66 188801Google Scholar
Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar
[5] Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125
[6] 卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688
Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688
[7] Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790
[8] Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar
[9] Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562
[10] Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar
[11] Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087
[12] Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085
[13] Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar
[14] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar
Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar
[15] Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710
[16] Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar
[17] Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar
[18] Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar
[19] Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar
[20] Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar
[21] Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar
[22] Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203
-
图 4 AFM测试1 MeV电子辐照InGaAs子电池前后表面形貌及横向剖面对比图 (a)未辐照子电池; (b)辐照1 × 1015 cm–2后子电池; (c)横向剖面图
Figure 4. Surface morphology and cross section of InGaAs sub-cell before and after 1 MeV electron irradiation by AFM: (a) The unirradiated sub-cell; (b) the sub-cell after 1 × 1015 cm–2 electron irradiation; (c) the cross section comparison.
表 1 1 MeV辐照前后InGaAs(1.0 eV)子电池的Voc, Isc和Pmax
Table 1. Voc, Isc and Pmax of InGaAs(1.0 eV) sub-cells before and after electron irradiated.
InGaAs (1.0 eV) Voc/V Isc/mA Pmax/mW 未辐照 0.5089 18.25 7.30 辐照后 0.3093 11.57 3.56 剩余率 60.8% 63.4% 48.8% 表 2 1 MeV辐照前后InGaAs (0.7 eV)子电池的Voc, Isc和Pmax
Table 2. Voc, Isc and Pmax of InGaAs (0.7 eV) sub-cells before and after electron irradiated.
InGaAs (0.7 eV) Voc/V Isc/mA Pmax/mW 未辐照 0.2529 11.660 1.940 辐照后 0.1428 6.950 0.653 剩余率 56.5% 59.6% 33.7% 表 3 辐照前后InGaAs (1.0 eV)子电池Rs, Rsh, Is1和Is2
Table 3. Rs, Rsh, Is1 and Is2 of InGaAs (1.0 eV) sub-cells before and after electron irradiated.
InGaAs (1.0 eV) Rs/Ω Rsh/Ω Is1/A Is2/A 未辐照 1.5 4.3 × 104 3.6 × 10–7 4.2 × 10–7 辐照后 6.2 5.3 × 103 6.4 × 10–5 6.5 × 10–5 剩余率 4.13% 0.123% 178% 155% 表 4 辐照前后InGaAs (0.7 eV)子电池的Rs, Rsh, Is1和Is2
Table 4. Rs, Rsh, Is1 and Is2 of InGaAs (0.7 eV) sub-cells before and after electron irradiated.
InGaAs (0.7 eV) Rs/Ω Rsh/Ω Is1/A Is2/A 未辐照 2.9 1.3 × 104 2.7 × 10–5 3.3 × 10–5 辐照后 7.5 1.4 × 103 1.4 × 10–4 1.9 × 10–4 剩余率 2.59% 0.108% 5.19% 5.76% 表 5 辐照及热退火过程中InGaAs (1.0 eV)子电池Jsc变化
Table 5. Jsc of InGaAs (1.0 eV) sub-cell in irradiation and thermal annealing.
InGaAs (1.0 eV) 退火温度 未辐照Jsc/mA) 退火时间 Jsc/min·mA–1 0 3 5 10 15 30 60 120 180 60 ℃ 13.57 10.26 10.26 10.28 10.29 10.31 10.38 10.41 10.48 10.53 90 ℃ 13.31 10.19 10.21 10.23 10.28 10.30 10.34 10.39 10.41 10.46 120 ℃ 13.75 10.41 10.46 10.49 10.57 10.65 10.78 10.79 10.81 10.84 150 ℃ 13.51 10.31 10.43 10.59 10.84 11.07 11.68 11.73 11.83 11.98 180 ℃ 13.55 10.38 10.72 10.96 11.46 11.90 12.50 12.67 12.85 12.88 表 6 辐照及热退火过程中InGaAs (0.7 eV)子电池Jsc变化
Table 6. Jsc of InGaAs (0.7 eV) sub-cell in irradiation and thermal annealing.
InGaAs (0.7 eV) 退火温度 未辐照 Jsc/mA 退火时间 Jsc/min·mA–1 0 3 5 10 15 30 60 120 180 60 ℃ 8.17 6.27 6.27 6.27 6.31 6.32 6.36 6.40 6.45 6.47 90 ℃ 8.33 6.46 6.47 6.48 6.53 6.53 6.55 6.59 6.63 6.67 120 ℃ 8.28 6.19 6.21 6.22 6.24 6.28 6.33 6.35 6.42 6.44 150 ℃ 8.24 6.15 6.18 6.21 6.25 6.29 6.45 6.71 6.79 6.82 180 ℃ 8.25 6.2 6.25 6.3 6.44 6.51 6.8 7.34 7.59 7.69 表 7 不同退火温度下InGaAs (1.0 eV)和InGaAs (0.7 eV)子电池缺陷浓度变化系数α拟合值
Table 7. Fitting value of the variation defect concentration coefficient(α) of InGaAs sub-cell at different annealing temperatures.
退火温度 α[InGaAs (1.0 eV)/s–1] α[InGaAs (0.7 eV)/s–1] 60 ℃ 1.74 × 10–3 1.47 × 10–3 90 ℃ 4.09 × 10–3 2.43 × 10–3 120 ℃ 7.33 × 10–3 4.70 × 10–3 150 ℃ 2.52 × 10–2 7.38 × 10–3 180 ℃ 5.72 × 10–2 1.82 × 10–2 -
[1] Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O, Zaidi S H 2012 Renewable Sustainable Energy Rev. 16 5834Google Scholar
[2] Imaizumi M, Kawakita S, Sumita T, Takamoto T, Ohshima T Yamaguchi M 2005 Prog. Photovoltaics 13 529Google Scholar
[3] France R M, Geisz J F, García I, Steiner M A, McMahon W E, Friedman D J, Moriarty T E, Osterwald C, Ward J S, Duda A, Young M, Olavarria W J 2015 IEEE J. Photovoltaics 5 432Google Scholar
[4] 宋明辉, 王笃祥, 毕京锋, 陈文浚, 李明阳, 李森林, 刘冠洲, 吴超瑜 2017 物理学报 66 188801Google Scholar
Song M H, Wang D X, Bi J F, Chen W J, Li M Y, Li S L, Liu G Z, Wu C Y 2017 Acta Phys. Sin. 66 188801Google Scholar
[5] Tatavarti R, Wibowo A, Martin G, Tuminello F, Youtsey C, Hillier G, Pan N 2010 IEEE 35 th Photovoltaic Specialists Conference, Honolulu, Hawaii, USA, June 20−25, 2010 p2125
[6] 卢建娅, 谭明, 杨文献, 陆书龙, 张玮, 黄健 2016 半导体光电 37 688
Lu J Y, Tan M, Yang W X, Lu S L, Zhang W, Huang J 2016 Semicond. Optoelectron. 37 688
[7] Boisvert J, Law D, King R, Rehder E, Chiu P, Bhusari D, Fetzer C, Liu X, Hong W, Mesropian S, Woo R, Edmondson K, Cotal H, Krut D, Singer S, Wierman S, Karam N H 2013 IEEE 39th Photovoltaic Specialists Conference Tampa, Florida, USA, Jun 16−21, 2013 p2790
[8] Zhang Y Q, Huo M X, Wu Y Y, Sun C Y, Zhao H J, Geng H B, Wang S, Liu R B, Sun Q 2017 Chin. Phys. B 26 088801Google Scholar
[9] Loo R, Knechtli R C, Kamath G S 1978 IEEE 13th Photovoltaic Specialists Conference Washington DC, USA, Jun 5, 1978 p562
[10] Loo R Y, Kamath G S, Li S S 1990 IEEE Trans. Electron Devices 37 485Google Scholar
[11] Loo R Y, Kamath G S 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1087
[12] Heinbockel J H, Conway E J, Walker G H 1980 IEEE 14th Photovoltaic Specialists Conference San Diego, California, USA, January 7−10, 1980 p1085
[13] Walker G H, Conway E J 1978 J. Electrochem. Soc. 125 676Google Scholar
[14] 齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 物理学报 64 108802Google Scholar
Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar
[15] Xiang X B, Du W H, Liao X B, Chang X L 2001 Chin. J. Semicond. 22 710
[16] Yamaguchi M, Okuda T, Taylor S J, Takamoto T, Ikeda E, Kurita H 1997 Appl. Phys. Lett. 70 1566Google Scholar
[17] Sasaki T, Arafune K, Metzger W, Romero M J, Jones K, Tassim M A, Ohshita Y, Yamaguchi M 2009 Sol. Energy Mater. Sol. Cells 93 936Google Scholar
[18] Angelis N D, Bourgoin J C, Takamoto T, Khan A, Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 66 495Google Scholar
[19] Bourgoin J C, Zazoui M 2002 Semicond. Sci. Technol. 17 453Google Scholar
[20] Bourgoin J C, Angelis N D 2001 Sol. Energy Mater. Sol. Cells 66 467Google Scholar
[21] Amekura H, Kishimoto N, Saito T 1995 J. Appl. Phys. 77 4984Google Scholar
[22] Kaminski A, Marchand J J, Fave A, Laugier A 1997 IEEE 26th Photovoltaic Specialists Conference Anaheim, California, USA, September 29−October 3, 1997 p203
Catalog
Metrics
- Abstract views: 6491
- PDF Downloads: 97
- Cited By: 0