Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The impact of trade war on Shanghai stock exchange industry based on Granger causality network

Zhao Jun-Chan Huang Qi-An Wu Xiao-Qun Xiao Lei

Citation:

The impact of trade war on Shanghai stock exchange industry based on Granger causality network

Zhao Jun-Chan, Huang Qi-An, Wu Xiao-Qun, Xiao Lei
PDF
HTML
Get Citation
  • The impact of the China-US trade war on the industry is a common concern. Industries in the stock market have a high degree of correlation that the drastic fluctuation of stock prices of one industry may cause related industry stock price fluctuating, and even may influence the whole financial market through chain reaction. Therefore, it is helpful for us to understand the impact of the China-Us trade war on Shanghai stock market and the internal relations among the different industry sectors by analyzing how the financial shock spreads in the stock market.However, there are still several essential problems to be solved. First, previous work mainly employed the mean field theory to study the diffusion of financial crisis in the stock market. Although this method can reflect the diffusion of financial crisis in the stock market as a whole, it is not accurate enough to explain the relationship among industry sectors. Second, the previous work mainly used numerical simulations to study the dynamic properties of the spread model, thus there is necessity to demonstrate whether numerical simulations can reflect the real situation of stock market.To solve these two problems, this paper proposes a method combining parameter estimation techniques and the Monte Carlo simulation algorithm based on the disease spreading model. By using this method, we select the Shanghai stock exchange industry indexes from 2016 to 2019, construct the Granger causality network, estimate the parameters of the risk spreading model using the event study methodology, and finally simulate the diffusion of financial shocks. The results show that: firstly, the trade war has significantly changed the structure of Shanghai stock exchange industries, and industry indexes have become more closely related. Secondly, after the trade war, the financial shock will cause the number of infected nodes in Shanghai stock market increasing rapidly in the initial stage, and the scale of infection will reach the peak within the 10th to 15th trading days. The number of susceptible infections begins to slow down on about the 25th trading day, which means that the infection caused by financial shock has ended and the market is gradually recovering. Thirdly, the calculation results of the basic regeneration number show that the risk caused by financial shock is easy to spread in the Shanghai stock market after the trade war, and the phenomenon of "simultaneously rise and fall" of Shanghai stock market easily emerges.
      Corresponding author: Xiao Lei, xiaoleiyouhua@sina.com
    • Funds: Project supported by the National Social Science Foundation of China (Grant No. 18BTJ025)
    [1]

    Fenn D J, Porter M A, Williams S, Mcdonald M, Johnson N F, Jones N S 2011 Phys. Rev. E 84 026109

    [2]

    韩华, 吴翎燕, 宋宁宁 2014 物理学报 63 138901Google Scholar

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901Google Scholar

    [3]

    于恩峰 2019 中国证券期货 03 9Google Scholar

    Yu E F 2019 Securities & Futures of China 03 9Google Scholar

    [4]

    高湘昀, 安海忠, 方伟 2012 物理学报 61 098902Google Scholar

    Gao X Y, An H Z, Fang W 2012 Acta Phys. Sin. 61 098902Google Scholar

    [5]

    Buccheri G, Marmi S, Mantegna R N 2013 Phys. Rev. E 88 012806Google Scholar

    [6]

    Kazemilari M, Djauhari M A 2015 Physica A 429 62Google Scholar

    [7]

    邱路, 贾天明, 杨会杰 2016 物理学报 65 198901Google Scholar

    Qiu L, Jia T M, Yang H J 2016 Acta Phys. Sin. 65 198901Google Scholar

    [8]

    Landesberger T, Diel S, Bremm S, Fellner D 2015 Information Visualization 14 93Google Scholar

    [9]

    Liu C, Arunkumar N 2019 Cluster Computing 22 4307Google Scholar

    [10]

    Gong C, Tang P, Wang Y 2019 Physica A 535 122351Google Scholar

    [11]

    Wang H, Li S 2020 Physica A 541 123325Google Scholar

    [12]

    Blinowska K, Ku R, Kamiński M 2004 Phys. Rev. E 22 050902

    [13]

    Výrost T, Štefan L, Baumöh E 2015 Physica A 427 262Google Scholar

    [14]

    Zhang L, Zhong G, Wu Y 2010 J. Biomed. Sci. Eng. 3 848Google Scholar

    [15]

    Xun W, Wang X Y, Liu X Z 2015 Chin. Phys. B 5 163Google Scholar

    [16]

    Kempe D, Jon K, éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24−27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79Google Scholar

    [18]

    Liu Q M, Li B C, Sun M C 2017 Math. Prob. Eng. 2017 6376502Google Scholar

    [19]

    Chen L J, Sun J T 2014 Physica A 410 196Google Scholar

    [20]

    靳祯, 孙桂全, 刘茂省 2014 网络传染病动力学建模与分析 (第一版) (北京: 科学出版社) 第179−184页

    Jin Z, Sun G Q, Liu M S 2014 Dynamic Modeling and Analysis of Betwork Infectious Diseases (1st Ed.) (Beijing: Science Press) pp179−184 (in Chinese)

    [21]

    胡志浩, 李晓花 2017 财贸经济 38 101

    Hu Z H, Li X H 2017 Finance & Trade Economics 38 101

    [22]

    Youssef M, Scoglio C 2011 J. Theor. Biol. 283 136Google Scholar

    [23]

    崔玉美, 陈姗姗, 傅新楚 2017 复杂系统与复杂性科学 14 14Google Scholar

    Cui Y M, Chen S S, Fu X C 2017 Complex Syst. Complexity Sci. 14 14Google Scholar

    [24]

    Tanimoto S 2011 Computer Science 1103 1680

    [25]

    Wang S S, Xu K, Zhang H 2019 Pacific-Basin Finance Journal 57 101174Google Scholar

    [26]

    Zhu L, Li H M, Zheng D Z 2020 The Chinese Economy 53 246Google Scholar

  • 图 1  上证股市格兰杰因果网络图 (a)贸易战开始前网络; (b)贸易战开始后网络

    Figure 1.  Granger causality network of Shanghai Stock Market: (a) Before trade war; (b) after trade war

    图 2  标准化后的行业综合指数

    Figure 2.  Standardized industry composite index

    图 3  参数拟合 (a)片段1拟合图; (b)片段2拟合图; (c)片段3拟合图; (d)片段4拟合图; (e)片段5拟合图; (f)片段6拟合图. 其中实线表示实际曲线, 星号表示拟合曲线

    Figure 3.  Parameter fitting: (a) Segment 1 fitting plot; (b) segment 2 fitting plot; (c) segment 3 fitting plot; (d) segment 4 fitting plot; (e) segment 5 fitting plot; (f) segment 6 fitting plot. Solid line represents actual curve, asterisk represents fitting curve.

    图 4  有向网络下的模拟传染扩散 (a), (d)贸易战发生前后生物医药类行业为传染源的扩散图; (b), (e)贸易战发生前后家机械设备类业为传染源的扩散图; (c), (f)贸易战发生前后钢铁和工业金属行业为传染源的扩散图

    Figure 4.  Simulation of contagion diffusion in directed networks: (a), (d) Diffusion charts of biomedicine before and after the trade war; (b), (e) diffusion charts of mechanical equipment industry before and after the trade war; (c), (f) diffusion charts of steel and industrial metal industries before and after the trade war

    表 1  网络拓扑结构指标

    Table 1.  Network topology index

    边数 平均度 网络直径 网络密度 平均路径长度
    贸易战
    开始前
    674 6.544 6 0.064 2.56
    贸易战
    开始后
    1500 14.563 4 0.143 1.97
    DownLoad: CSV

    表 2  SIR状态划分表汇总

    Table 2.  Summary table of SIR status

    时间/日 片段1 片段2 片段3
    S I R S I R S I R
    1 91 12 0 95 8 0 93 10 0
    2 91 12 0 95 8 0 87 16 0
    3 90 13 0 95 7 1 77 26 0
    4 86 17 0 95 7 1 76 26 1
    5 86 17 0 95 7 1 76 22 5
    6 86 8 9 78 24 1 76 22 5
    7 86 8 9 78 23 2 76 20 7
    8 86 5 12 78 20 5 76 18 9
    9 86 4 13 78 17 8 76 18 9
    10 86 4 13 78 6 19 76 18 9
    11 86 4 13 78 6 19 76 10 17
    12 86 3 14 78 5 20 76 9 18
    13 86 3 14 78 5 20 76 9 18
    14 86 1 16 78 5 20 76 8 19
    15 86 1 16 78 5 20 76 8 19
    16 86 1 16 78 4 21 76 6 21
    17 86 1 16 78 2 23 76 6 21
    18 86 1 16 78 2 23 76 6 21
    19 86 1 16 78 2 23 76 4 23
    20 86 1 16 78 2 23 76 4 23
    21 86 1 16
    22 86 0 17
    时间/日 片段4 片段5 片段6
    S I R S I R S I R
    1 84 19 0 83 20 0 100 3 0
    2 77 26 0 55 48 0 98 4 1
    3 66 36 1 42 59 2 97 5 1
    4 26 76 1 33 68 2 97 5 1
    5 21 81 1 22 79 2 96 6 1
    6 14 86 3 21 79 3 95 6 2
    7 3 97 3 10 90 3 92 9 2
    8 3 96 4 10 89 4 91 10 2
    9 3 94 6 10 59 34 73 28 2
    10 3 92 8 10 59 34 73 27 3
    11 3 82 18 10 58 35 73 24 6
    12 3 79 21 10 58 35 73 24 6
    13 3 60 40 9 59 35 73 23 7
    14 3 55 45 8 60 35 73 21 9
    15 3 53 47 8 60 35 73 18 12
    16 3 45 55 8 58 37 72 18 13
    17 3 45 55 8 57 38 69 21 13
    18 3 42 58 8 40 55 59 31 13
    DownLoad: CSV

    表 2 (续)  SIR状态划分表汇总

    Table 2 (续).  Summary table of SIR status

    时间/日 片段4 片段5 片段6
    S I R S I R S I R
    19 3 36 64 8 36 59 38 52 13
    20 3 36 64 8 36 59 26 64 13
    21 3 34 66 7 37 59 22 67 14
    22 3 31 69 7 37 59 22 66 15
    23 3 28 72 7 36 60 21 67 15
    24 7 29 67 21 66 16
    25 7 15 81 21 66 16
    26 7 14 82 21 66 16
    27 7 12 84 21 66 16
    28 21 65 17
    29 21 51 31
    30 21 48 34
    31 21 47 35
    32 21 47 35
    33 21 45 37
    34 21 43 39
    DownLoad: CSV

    表 3  上证股市传染基本再生数

    Table 3.  The basic recurrence number of contagion in Shanghai Stock Market

    $\langle kl\rangle$ $\langle k\rangle$ $\hat{\bar{\lambda}}$ $\hat{\bar{\mu}}$ $R_0$
    贸易战开始前 67.2913 6.5437 0.0230 0.1677 1.4104
    贸易战开始后 290.1359 14.5631 0.0415 0.0479 17.2608
    DownLoad: CSV
  • [1]

    Fenn D J, Porter M A, Williams S, Mcdonald M, Johnson N F, Jones N S 2011 Phys. Rev. E 84 026109

    [2]

    韩华, 吴翎燕, 宋宁宁 2014 物理学报 63 138901Google Scholar

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901Google Scholar

    [3]

    于恩峰 2019 中国证券期货 03 9Google Scholar

    Yu E F 2019 Securities & Futures of China 03 9Google Scholar

    [4]

    高湘昀, 安海忠, 方伟 2012 物理学报 61 098902Google Scholar

    Gao X Y, An H Z, Fang W 2012 Acta Phys. Sin. 61 098902Google Scholar

    [5]

    Buccheri G, Marmi S, Mantegna R N 2013 Phys. Rev. E 88 012806Google Scholar

    [6]

    Kazemilari M, Djauhari M A 2015 Physica A 429 62Google Scholar

    [7]

    邱路, 贾天明, 杨会杰 2016 物理学报 65 198901Google Scholar

    Qiu L, Jia T M, Yang H J 2016 Acta Phys. Sin. 65 198901Google Scholar

    [8]

    Landesberger T, Diel S, Bremm S, Fellner D 2015 Information Visualization 14 93Google Scholar

    [9]

    Liu C, Arunkumar N 2019 Cluster Computing 22 4307Google Scholar

    [10]

    Gong C, Tang P, Wang Y 2019 Physica A 535 122351Google Scholar

    [11]

    Wang H, Li S 2020 Physica A 541 123325Google Scholar

    [12]

    Blinowska K, Ku R, Kamiński M 2004 Phys. Rev. E 22 050902

    [13]

    Výrost T, Štefan L, Baumöh E 2015 Physica A 427 262Google Scholar

    [14]

    Zhang L, Zhong G, Wu Y 2010 J. Biomed. Sci. Eng. 3 848Google Scholar

    [15]

    Xun W, Wang X Y, Liu X Z 2015 Chin. Phys. B 5 163Google Scholar

    [16]

    Kempe D, Jon K, éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24−27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79Google Scholar

    [18]

    Liu Q M, Li B C, Sun M C 2017 Math. Prob. Eng. 2017 6376502Google Scholar

    [19]

    Chen L J, Sun J T 2014 Physica A 410 196Google Scholar

    [20]

    靳祯, 孙桂全, 刘茂省 2014 网络传染病动力学建模与分析 (第一版) (北京: 科学出版社) 第179−184页

    Jin Z, Sun G Q, Liu M S 2014 Dynamic Modeling and Analysis of Betwork Infectious Diseases (1st Ed.) (Beijing: Science Press) pp179−184 (in Chinese)

    [21]

    胡志浩, 李晓花 2017 财贸经济 38 101

    Hu Z H, Li X H 2017 Finance & Trade Economics 38 101

    [22]

    Youssef M, Scoglio C 2011 J. Theor. Biol. 283 136Google Scholar

    [23]

    崔玉美, 陈姗姗, 傅新楚 2017 复杂系统与复杂性科学 14 14Google Scholar

    Cui Y M, Chen S S, Fu X C 2017 Complex Syst. Complexity Sci. 14 14Google Scholar

    [24]

    Tanimoto S 2011 Computer Science 1103 1680

    [25]

    Wang S S, Xu K, Zhang H 2019 Pacific-Basin Finance Journal 57 101174Google Scholar

    [26]

    Zhu L, Li H M, Zheng D Z 2020 The Chinese Economy 53 246Google Scholar

  • [1] Xu Xiao-Yan. Quantum Monte Carlo study of strongly correlated electrons. Acta Physica Sinica, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [2] Deng Li, Li Rui, Wang Xin, Fu Yuan-Guang. Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis. Acta Physica Sinica, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [3] Xu Yu-Pei, Li Shu. An efficient Monte Carlo simulation method for thermal radiation transport. Acta Physica Sinica, 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [4] He Chang-Chun, Liao Ji-Hai, Yang Xiao-Bao. Monte-Carlo tree search for stable structures of planar clusters. Acta Physica Sinica, 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [5] ShangGuan Dan-Hua, Deng Li, Li Gang, Zhang Bao-Yin, Ma Yan, Fu Yuan-Guang, Li Rui, Hu Xiao-Li. Algorithm researches for efficient global tallying in criticality calculation of Monte Carlo method. Acta Physica Sinica, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [6] Qiu Lu, Jia Tian-Ming, Yang Hui-Jie. Differitial network investigated influences of financial crises on industries. Acta Physica Sinica, 2016, 65(19): 198901. doi: 10.7498/aps.65.198901
    [7] Sun Xian-Ming, Xiao Sai, Wang Hai-Hua, Wan Long, Shen Jin. Transportation of Gaussian light beam in two-layer clouds by Monte Carlo simulation. Acta Physica Sinica, 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [8] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [9] Chen Kun, Deng You-Jin. Higgs mode near superfluid-to-Mott-insulatortransition studied by the quantum Monte Carlo method. Acta Physica Sinica, 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [10] Shangguan Dan-Hua, Li Gang, Deng Li, Zhang Bao-Yin, Li Rui, Fu Yuan-Guan. Modified uniform-fission-site algorithm in Monte Carlo simulation of reactor criticality problem. Acta Physica Sinica, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [11] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [12] Li Jing, Zhao Yong-Jun, Li Dong-Hai. Time delay estimation using Markov Chain Monte Carlo method. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [13] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [14] Yang Chao, Long Ji-Dong, Wang Ping, Liao Fang-Yan, Xia Meng-Zhong, Liu La-Qun. The full three-dimensional electromagnetic PIC/MCC numerical algorithm research of Penning ion source discharge. Acta Physica Sinica, 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [15] Fu Fang-Zheng, Li Ming. Calculating the threshold of random laser by using Monte Carlo method. Acta Physica Sinica, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] Ju Zhi-Ping, Cao Wu-Fei, Liu Xiao-Wei. Study of scattering angular distribution of proton using Monte-Carlo method. Acta Physica Sinica, 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [17] Sun Xian-Ming, Han Yi-Ping, Shi Xiao-Wei. Monte Carlo simulation of backscattering by a melting layer of precipitation. Acta Physica Sinica, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [18] Shi Wei, Jia Wan-Li, Ji Wei-Li, Liu Kai. Monte Carlo simulation of operating modes of semi-insulting GaAs photoconductive switches. Acta Physica Sinica, 2007, 56(11): 6334-6339. doi: 10.7498/aps.56.6334
    [19] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [20] PAN ZHENG-YING, CHEN JIAN-XIN, WU SHI-MING, HUO YU-KUN. MONTE CARLO CALCULATION OF PREFERENTIAL SPUTTE-RING IN MULTI-COMPONENT TARGET. Acta Physica Sinica, 1990, 39(2): 319-324. doi: 10.7498/aps.39.319
Metrics
  • Abstract views:  5238
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2020
  • Accepted Date:  23 October 2020
  • Available Online:  18 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回