Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge carrier transport in oxygen-ion conducting electrolytes with considering space charge layer effect

Xu Han Zhang Lu

Citation:

Charge carrier transport in oxygen-ion conducting electrolytes with considering space charge layer effect

Xu Han, Zhang Lu
PDF
HTML
Get Citation
  • Space charge layer (SCL) effect induced by interfaces, e.g., grain boundaries in the polycrystals or heterointerfaces in the composites, may make the characteristics of the charge carrier transport near the interfaces significantly different from those in the bulk area. In previous studies, the Poisson-Boltzmann (PB) equation was widely used to model the SCL effect, in which all the charge carriers were assumed to be in electrochemical equilibrium. However, the assumption of the electrochemical equilibrium is no longer valid when the charge carriers exhibit macroscopic motion. In this paper, we develop a model to simulate the charge carrier transport within the oxygen-ion conductor, particularly in the SCL, in which the charge carrier mass conservation equation is coupled to the Poisson equation. Our present coupled model, in which the assumption of the electrochemical equilibrium is not employed, is therefore able to simulate charge carrier transport with macroscopic motion. Two key dimensionless parameters governing the SCL effect are deduced, i.e. the dimensionless Debye length characterizing the ratio of Debye length to the thickness of oxygen-ion conductor, and the dimensionless potential representing the relative importance of the overpotential to the thermal potential. Taking AO2-M2O3 oxide for example, the conventional model with using PB equation and our present coupled model are compared for predicting the SCL effect. Furthermore, the mechanism of the oxygen vacancy transport in the oxygen-ion conductor with considering the SCL effect is thoroughly discussed. In a brief summary, with increasing the current density at the interface, the SCL resistance shows a non-monotonical tendency, i.e., it firstly decreases and then increases. Besides, enlarging the dimensionless Debye length significantly increases the SCL resistance. The influence of increasing the dimensionless potential on the oxygen vacancy transport is obvious when the overpotential is comparable to the thermal potential, but it becomes negligible when the overpotential is far less than the thermal potential. These results may offer helpful guidance for enhancing the performance of oxygen-ion conductors by rationally designing the grain boundaries and heterointerfaces.
      Corresponding author: Xu Han, xuhanxh@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51606151) and the National Science Foundation for Postdoctoral Scientists of China (Grant No. 2020M673392)
    [1]

    Goodenough J B 1992 Mater. Sci. Eng. B 12 357Google Scholar

    [2]

    陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋 2011 物理学报 60 046603Google Scholar

    Chen Y Y, Hou C J, Kong X S, Liu C S, Wang X P, Fang Q F 2011 Acta Phys. Sin. 60 046603Google Scholar

    [3]

    Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar

    [4]

    Guo X, Mi S B, Waser R 2005 Electrochem. Solid-State Lett. 8 J1Google Scholar

    [5]

    Michael S, Eklund P, Pryds N, Johnson E, Helmersson U, Bottiger J 2010 Adv. Funct. Mater. 20 2071Google Scholar

    [6]

    Fan L D, Zhu B, Su P C, He C X 2018 Nano Energy 45 148Google Scholar

    [7]

    Zhao C H, Li Y F, Zhang W Q, Zheng Y, Lou X M, Yu B, Chen J, Chen Y, Liu M L, Wang J C 2020 Energy Environ. Sci. 13 53Google Scholar

    [8]

    Beekmans N M, Heyne L 1976 Electrochim. Acta 21 303Google Scholar

    [9]

    Guo X, Sigle W, Maier J 2003 J. Am. Ceram. Soc. 86 77Google Scholar

    [10]

    Mebane D S, De Souza R A 2015 Energy Environ. Sci. 8 2935Google Scholar

    [11]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [12]

    Dagotto E 2007 Science 318 1076Google Scholar

    [13]

    Connor P A, Yue X L, Savaniu C D, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne D, Maher R C, Cohen L F, Tomov R I, Glowacki B A, Kumar R V, Irvine John T S 2018 Adv. Energy Mater. 8 1800120Google Scholar

    [14]

    高韶华, 王玉霞, 王宏伟, 袁帅 2011 物理学报 60 086601Google Scholar

    Gao S H, Wang Y X, Wang H W, Yuan S 2011 Acta Phys. Sin. 60 086601Google Scholar

    [15]

    Gregori G, Merkle R, Maier J 2017 Prog. Mater Sci. 89 252Google Scholar

    [16]

    Parras J P, De Souza R A 2020 Acta Mater. 195 383Google Scholar

    [17]

    Kharton V V 2011 Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes (Weinheim: Wiley-VCH Verlag & Co. KGaA) p33

    [18]

    Tong X, Mebane D S, De Souza R A 2020 J. Am. Ceram. Soc. 103 5Google Scholar

    [19]

    Newman J, Thomas-Alyea K E 2004 Electrochemical Systems (3rd Ed.) (New Jersey: John Wiley & Sons, Inc.) p186

    [20]

    Nelson G J, Cassenti B N, Peracchio A A, Chiu Wilson K S 2012 J. Power Sources 205 48Google Scholar

    [21]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [22]

    Xu H, Chen Y, Kim J H, Dang Z, Liu M L 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [23]

    Zhang L, Wang M R 2017 J. Colloid Interface Sci. 486 219Google Scholar

    [24]

    Kamali R, Soloklou M N, Hadidi H 2018 Chem. Phys. 507 1Google Scholar

    [25]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第214, 215页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp214, 215 (in Chinese)

  • 图 1  本文计算区域与边界条件, 其中计算区域包括空间电荷层与体相区域

    Figure 1.  Computational domain including the space charge layer and bulk area, and boundary conditions used in the present study.

    图 2  Poisson-载流子质量守恒耦合方程(Present model)与PB方程(PB equation)的计算结果比较 (a)导体净电流密度为0时, 本文发展的PB方程LB模型与耦合方程LB模型的计算结果与文献[18]求解PB方程获得的计算结果比较, 其中α = F/(RT), lMS = [ϕ(0)ε0εr/(FcV0)]0.5; (b), (c)导体净电流密度不为0时的计算结果

    Figure 2.  Comparison of the results predicted by the coupled Poisson and charge carrier mass conservation equation (Present model) and the PB equation. (a) The net current density is 0. Results predicted by the PB equation from Ref. [18] is also presented for the comparison purpose. Here, α = F/(RT) and lMS = [ϕ(0)ε0εr/(FcV0)]0.5. (b), (c) Results of the case that the net current density is not 0

    图 3  无量纲界面电流密度(iB/i0)对(a)界面处电势与氧空位浓度及(b)空间电荷层电阻与厚度的影响; 当iB/i0 = 2, 4, 6时, (c)导体内电势、(d)氧空位浓度、(e)电荷密度及(f)电流密度分布

    Figure 3.  Effects of dimensionless current density at the interface (iB/i0) on (a) the potential and oxygen vacancy concentration at the interface, and (b) the resistance and thickness of SCL. Distributions of (c) potential, (d) oxygen vacancy concentration, (e) charge density and (f) current density within the conductor when iB/i0 = 2, 4 and 6, respectively.

    图 4  无量纲Debye长度(λD/x0)对(a)界面处电势和氧空位浓度及(b)空间电荷层电阻与厚度的影响; 当λD/x0 = 0.01, 0.05, 0.1时, (c)导体内电势、(d)氧空位浓度、(e)电荷密度及(f)电流密度分布

    Figure 4.  Effects of dimensionless Debye length (λD/x0) on the (a) potential and oxygen vacancy concentration at the interface, and (b) the resistance and thickness of SCL. Distributions of (c) potential, (d) oxygen vacancy concentration, (e) charge density and (f) current density within the conductor when λD/x0 = 0.01, 0.05 and 0.1, respectively.

    图 5  无量纲电势(zV0/(RT))对(a)界面处电势和氧空位浓度及(b)空间电荷层电阻和厚度的影响; 当zV0/(RT) = 10–3, 1与10时, (c)导体内电势、(d)氧空位浓度、(e)电荷密度及(f)电流密度分布

    Figure 5.  Effects of dimensionless potential (zV0/(RT)) on (a) the potential and oxygen vacancy concentration at the interface, and (b) the resistance and thickness of SCL. Distributions of (c) potential, (d) oxygen vacancy concentration, (e) charge density and (f) current density within the conductor when zV0/(RT) = 10–3, 1 and 10, respectively.

    表 1  演化方程(20)还原不同控制方程时所涉及的平衡分布函数、源项和求解变量表达式

    Table 1.  Equilibrium distribution function, source term and variable expression in the evolution Eq. (20) for obtaining different governing equations.

    无量纲PB方程((12)式)无量纲Poisson方程((13)式)无量纲载流子质量守恒方程((14)式)
    平衡分布函数(fαeq)${w_\alpha }{\phi ^*}$${w_\alpha }{\phi ^*}$${w_\alpha }c_{\rm{V}}^{*}$
    源项(Rg)$- \dfrac{ { {D^*} } }{ { { {\left( {\lambda _{\rm{D} }^*} \right)}^2}{Q^*} } }\left[ {1 - \exp \left( { - {Q^*}{\phi ^*} } \right)} \right]$$- \dfrac{ { {D^*} } }{ { { {\left( {\lambda _{\rm{D} }^*} \right)}^2}{Q^*} } }\left( {1 - c_{\rm{V} }^{*} } \right)$${D^{*}}{Q^{*}}\nabla \cdot \left( {c_{\rm{V}}^*\nabla {\phi ^{*}}} \right)$
    求解变量${\phi ^{*} } = \displaystyle\sum\nolimits_\alpha {f_\alpha ^{} }$${\phi ^{*} } = \displaystyle\sum\nolimits_\alpha {f_\alpha ^{} }$$c_{\rm{V} }^{*} = \displaystyle\sum\nolimits_\alpha {f_\alpha ^{} }$
    DownLoad: CSV
  • [1]

    Goodenough J B 1992 Mater. Sci. Eng. B 12 357Google Scholar

    [2]

    陈跃云, 侯春菊, 孔祥山, 刘长松, 王先平, 方前锋 2011 物理学报 60 046603Google Scholar

    Chen Y Y, Hou C J, Kong X S, Liu C S, Wang X P, Fang Q F 2011 Acta Phys. Sin. 60 046603Google Scholar

    [3]

    Maier J 1995 Prog. Solid State Chem. 23 171Google Scholar

    [4]

    Guo X, Mi S B, Waser R 2005 Electrochem. Solid-State Lett. 8 J1Google Scholar

    [5]

    Michael S, Eklund P, Pryds N, Johnson E, Helmersson U, Bottiger J 2010 Adv. Funct. Mater. 20 2071Google Scholar

    [6]

    Fan L D, Zhu B, Su P C, He C X 2018 Nano Energy 45 148Google Scholar

    [7]

    Zhao C H, Li Y F, Zhang W Q, Zheng Y, Lou X M, Yu B, Chen J, Chen Y, Liu M L, Wang J C 2020 Energy Environ. Sci. 13 53Google Scholar

    [8]

    Beekmans N M, Heyne L 1976 Electrochim. Acta 21 303Google Scholar

    [9]

    Guo X, Sigle W, Maier J 2003 J. Am. Ceram. Soc. 86 77Google Scholar

    [10]

    Mebane D S, De Souza R A 2015 Energy Environ. Sci. 8 2935Google Scholar

    [11]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [12]

    Dagotto E 2007 Science 318 1076Google Scholar

    [13]

    Connor P A, Yue X L, Savaniu C D, Price R, Triantafyllou G, Cassidy M, Kerherve G, Payne D, Maher R C, Cohen L F, Tomov R I, Glowacki B A, Kumar R V, Irvine John T S 2018 Adv. Energy Mater. 8 1800120Google Scholar

    [14]

    高韶华, 王玉霞, 王宏伟, 袁帅 2011 物理学报 60 086601Google Scholar

    Gao S H, Wang Y X, Wang H W, Yuan S 2011 Acta Phys. Sin. 60 086601Google Scholar

    [15]

    Gregori G, Merkle R, Maier J 2017 Prog. Mater Sci. 89 252Google Scholar

    [16]

    Parras J P, De Souza R A 2020 Acta Mater. 195 383Google Scholar

    [17]

    Kharton V V 2011 Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes (Weinheim: Wiley-VCH Verlag & Co. KGaA) p33

    [18]

    Tong X, Mebane D S, De Souza R A 2020 J. Am. Ceram. Soc. 103 5Google Scholar

    [19]

    Newman J, Thomas-Alyea K E 2004 Electrochemical Systems (3rd Ed.) (New Jersey: John Wiley & Sons, Inc.) p186

    [20]

    Nelson G J, Cassenti B N, Peracchio A A, Chiu Wilson K S 2012 J. Power Sources 205 48Google Scholar

    [21]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [22]

    Xu H, Chen Y, Kim J H, Dang Z, Liu M L 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [23]

    Zhang L, Wang M R 2017 J. Colloid Interface Sci. 486 219Google Scholar

    [24]

    Kamali R, Soloklou M N, Hadidi H 2018 Chem. Phys. 507 1Google Scholar

    [25]

    何雅玲, 王勇, 李庆 2009 格子Boltzmann方法的理论及应用 (北京: 科学出版社) 第214, 215页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Applications (Beijing: Science Press) pp214, 215 (in Chinese)

  • [1] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [2] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [3] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [5] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [6] Zhang Bai-Qiang, Zheng Zhong-Shan, Yu Fang, Ning Jin, Tang Hai-Ma, Yang Zhi-An. Effect of co-implantation of nitrogen and fluorine on the fixed positive charge density of the buried oxide layer in SIMOX SOI materials. Acta Physica Sinica, 2013, 62(11): 117303. doi: 10.7498/aps.62.117303
    [7] Shi Da-Wei, Wu Mei-Ling, Yang Chang-Ping, Ren Chun-Ling, Xiao Hai-Bo, Wang Kai-Ying. AC properties of Pr0.7Ca0.3MnO3 ceramics. Acta Physica Sinica, 2013, 62(2): 026201. doi: 10.7498/aps.62.026201
    [8] Han Ming-Jun, Ke Dao-Ming, Chi Xiao-Li, Wang Min, Wang Bao-Tong. A 2D semi-analytical model for the potential distribution of ultra-short channel MOSFET. Acta Physica Sinica, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [9] Zhang De-Ming, Zhuang Zhong, Wang Xian-Ping, Fang Qian-Feng. Synthesis and electrical property of oxide ionic conductor La1.9Y0.1Mo2O9 fine grain ceramic. Acta Physica Sinica, 2013, 62(7): 076601. doi: 10.7498/aps.62.076601
    [10] Zhang En-Xia, Tang Hai-Ma, Zheng Zhong-Shan, Yu Fang, Li Ning, Wang Ning-Juan, Li Guo-Hua, Ma Hong-Zhi. Influence of high-dose nitrogen implantation on the positive charge density of the buried oxide of silicon-on-insulator wafers. Acta Physica Sinica, 2011, 60(5): 056104. doi: 10.7498/aps.60.056104
    [11] Yang Chang-Ping, Chen Shun-Sheng, Dai Qi, Song Xue-Ping. The origin of EPIR effect in Nd0.7Sr0.3MnO3 ceramics. Acta Physica Sinica, 2011, 60(11): 117202. doi: 10.7498/aps.60.117202
    [12] Chen Yue-Yun, Hou Chun-Ju, Kong Xiang-Shan, Liu Chang-Song, Wang Xian-Ping, Fang Qian-Feng. Theorectical study of the oxide-ion conductorLa2Mo2-xMxO9(M=Cr,W). Acta Physica Sinica, 2011, 60(4): 046603. doi: 10.7498/aps.60.046603
    [13] Chen Jing, Jin Guo-Jun, Ma Yu-Qiang. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO diluted magnetic semiconductor. Acta Physica Sinica, 2009, 58(4): 2707-2712. doi: 10.7498/aps.58.2707
    [14] Ji Yun-Jing, Bian Bao-Min, Tong Chao-Xia, Lu Jian. Study on the electrical potential signals induced by laser plasma in the target with bias-voltage. Acta Physica Sinica, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [15] Wang Yang, Meng Liang. Effects of the oxygen vacancy on NO adsorption at the TiO2 surface. Acta Physica Sinica, 2005, 54(5): 2207-2211. doi: 10.7498/aps.54.2207
    [16] Xiang Jun, Li Li-Ping, Su Wen-Hui. Preparation and characterization of a new perovskite-type oxide ion conductor KN b1-xMgxO3-δ. Acta Physica Sinica, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
    [17] RUAN YAO-ZHONG, HU XUE-LONG, LI LI-PING, ZHAO YONG, PAN GUO-QIANG, CHEN ZU-YAO, ZHANG QI-RUI. INFLUENCE OF OXYGEN DEFICIENCY ON THE THERMOELECTRIC POWER IN SINGLE PHASE YBa2Cu3O7-x SYSTEM. Acta Physica Sinica, 1988, 37(9): 1560-1563. doi: 10.7498/aps.37.1560
    [18] LIU JIAN, XIE JU-SHAN, FENG SHANG-TING, ZHANG GUANG-YIN, WU ZHONG-KANG. DIRECT DISPLAY OF THE ACCUMULATION OF SPACE CHARGES IN ONE-DIMENSIONAL IONIC CONDUCTOR α-LiIO3. Acta Physica Sinica, 1987, 36(9): 1199-1202. doi: 10.7498/aps.36.1199
    [19] GU SHI-JIE, LI YIN-YUAN. THEORETICAL EXPLANATION OF THE LIGHT DIFFRACTION DUE TO SPACE CHARGE FLUCTUATION IN THE QUASI ONE-DIMENSIONAL IONIC CONDUCTOR-α-LiIO3 (I)——ANISOTROPIC MODES. Acta Physica Sinica, 1983, 32(7): 888-899. doi: 10.7498/aps.32.888
    [20] GU SHI-JIE, LI YIN-YUAN. THEORETICAL EXPLANATION OF THE LIGHT DIFFRACTION DUE TO SPACE CHARGE FLUCTUATION IN THE QUASI ONE-DIMENSIONAL IONIC CONDUCTOR-α-LiIO3 (II)——ISOTROPIC MODES. Acta Physica Sinica, 1983, 32(7): 900-910. doi: 10.7498/aps.32.900
Metrics
  • Abstract views:  7028
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2020
  • Accepted Date:  25 October 2020
  • Available Online:  07 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回