Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modulating infrared optoelectronic performance of GaInAsSb p-n junction by nanophotonic structure

Huangfu Xia-Hong Liu Shuang-Fei Xiao Jia-Jun Zhang Bei Peng Xin-Cun

Citation:

Modulating infrared optoelectronic performance of GaInAsSb p-n junction by nanophotonic structure

Huangfu Xia-Hong, Liu Shuang-Fei, Xiao Jia-Jun, Zhang Bei, Peng Xin-Cun
PDF
HTML
Get Citation
  • GaInAsSb quaternary alloys have attracted much interest in infrared optoelectronic applications due to their versatility in a large range of energy gaps from 0.296 eV to 0.726 eV when lattice matches to GaSb wafer. However, due to the high intrinsic carrier concentration and Auger recombination, GaInAsSb p-n junctions typically are characterized by high dark current density at room temperature and need to be operated at low temperature to obtain high optoelectronic performance. In this work, a front surface wide-bandgap semiconductor nano pillar array (NPA) and a high reflective metal back surface reflector (BSR) are designed to modulate optoelectronic performances of GaInAsSb p-n junction. The optical and optoelectronic characteristics are analyzed by the finite difference time domain simulation and the numerical solution of carrier transport equations, respectively. It shows that the NPA-BSR structure can trigger Mie-type resonance, Wood-Rayleigh anomaly effect and Fabry-Perot resonance, which can be used to trap the light efficiently in an ultrathin GaInAsSb film. Owing to these nanophotonic effects, the average light absorption of ~90% can be obtained in 1.0–2.3 μm infrared waveband for 1μm Ga0.84In0.16As0.14Sb0.86. It also shows that the Auger recombination can be suppressed with thickness decreasing which leads the carrier collection efficiency to increase and the dark current density to decrease. Theoretical results show that the carrier collection efficiency of ~99% and dark current density of ~5×10–6 A/cm2 can be obtained for the 1 μm Ga0.84In0.16As0.14Sb0.86 p-n junction. With these unique optoelectronic properties, the NPA-BSR nanophotonic structure can become a very promising method to realize the high performance ultrathin GaInAsSb infrared optoelectronic devices.
      Corresponding author: Peng Xin-Cun, xcpeng@ecit.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62061001, 61204071) and the Jiangxi Provincial Natural Science Foundation, China (Grant No. 20202BAB202013)
    [1]

    刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军 2014 物理学报 63 248102Google Scholar

    Liu C, Wei Z P, An N, He B T, Liu P C, Liu G J 2014 Acta Phys. Sin. 63 248102Google Scholar

    [2]

    Mitsuhara M, Ohiso Y, Matsuzaki H 2020 J. Cryst. Growth 535 125551Google Scholar

    [3]

    Hao H Y, Wang G W, Han X, Jiang D W, Sun, Y Y, Guo C Y, Xiang W, Xu Y Q and Niu Z C 2018 AIP Adv. 8 095106Google Scholar

    [4]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2018 Sol. Energ. Mat. Sol. C. 172 124

    [5]

    Liu Q, Marshall A, Kirer A 2019 Materials (Basel) 12 1743Google Scholar

    [6]

    Wang Y, Lou Y Y 2015 Renew. Energ. 75 8Google Scholar

    [7]

    You M H, Sun Q X, Yin L P, Fan J J, Liang X M, Li X, Yu X L, Li S J, Liu J S 2016 J. Nanomater. 2016 393502

    [8]

    Liang B L, Chen D Y, Wang B, Kwasniewski T A, Wang Z G 2010 IEEE T. Electron Dev. 57 361Google Scholar

    [9]

    Rothmayr F, Pfenning A, Kistner C, Koeth J, Knebl G, Schade A, Krueger S, Worschech L, Hartmann F, Höfling S 2018 Appl. Phys. Lett. 112 161107Google Scholar

    [10]

    Peng X C, Guo X, Zhang B L, Li X P, Zhao X W, Dong X, Zheng W, Du G T 2010 Infrared Phys. Techn. 53 37Google Scholar

    [11]

    秦飞飞 张海明 王彩霞 郭聪 张晶晶 2014 物理学报 63 198802Google Scholar

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802Google Scholar

    [12]

    El-Batawy Y M, Deen M J 2003 Proc. SPIE 4999 363Google Scholar

    [13]

    Jiang A Q, Osamu Y, Chen L Y 2020 SCI REP-UK 10 12780Google Scholar

    [14]

    Chen H L, Cattoni A, Lépinau R D, Walker A W, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S 2019 Nat. energy 4 761Google Scholar

    [15]

    Amalathas A P, Alkaisi M M 2019 Micromachines 10 619Google Scholar

    [16]

    Proise F, Joudrier A, Pardo F, Pelouard J, Guillemoles J 2018 Opt. Express 26 A806Google Scholar

    [17]

    Yang Z H, Gao P Q, Zhang C, Li X F, Ye J C 2016 SCI REP-UK 6 30503Google Scholar

    [18]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472Google Scholar

    [19]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [20]

    Behaghel B, Tamaki R, Vandamme N, Watanabe K, Dupuis C, Bardou N, Sodabanlu H, Cattoni A, Okada Y, Sugiyama M, Collin S, Guillemoles J 2015 Appl. Phys. Lett. 106 081107Google Scholar

    [21]

    Peng X C, Wang Z D, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [22]

    彭新村, 王智栋, 曾梦丝, 刘云, 邹继军, 朱志甫, 邓文娟 2019 无机材料学报 34 734Google Scholar

    Peng X C, Wang Z D, Zeng M S, Liu Y, Zou J J, Zhu Z F, Deng W J 2019 J. Inorg. Mater. 34 734Google Scholar

    [23]

    Wang C A, Shiau D A, Murphy P G, O'Brien P W, Huang R K, Connors M K, Anderson A C, Donetsky D, Anikeev S, Belenky G, Depoy D M, Nichols G 2004 J. Electron. Mater. 33 213Google Scholar

    [24]

    彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军 2020 物理学报 69 068501Google Scholar

    Peng X C, Wang Z D, Deng W J, Zhu Z F, Zou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar

    [25]

    Tian Y, Chua S J, Jin Y X 2003 Microelectron. J. 34 304

    [26]

    Peng X C, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2020 Opt. Express 28 860Google Scholar

    [27]

    Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energ. Mat. Sol. C. 94 1704Google Scholar

    [28]

    Tang L L, Fraas L M, Liu Z M, Xu C, Chen X Y 2016 IEEE T. Electron Dev. 63 3591Google Scholar

    [29]

    Dashiell M W, Beausang J F, Ehsani H, Nichols G J, Depoy D M, Danielson L R, Talamo P, Rahner K D, Brown E J, Burger S R, Fourspring P M, Topper W F, Jr., Baldasaro P F, Wang C A, Huang R K, Connors M K, Turner G W, Shellenbarger Z A, Taylor G, Li J Z, Martinelli R, Donetski D, Anikeev S, Belenky G L, Luryi S 2006 IEEE T. Electron Dev. 53 2879Google Scholar

    [30]

    Groep J, Polman A 2013 Opt. Express 21 26285Google Scholar

    [31]

    Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 SCI REP-UK 5 7810Google Scholar

    [32]

    Wang C A 2004 AIP Conf. Proc. 738 255Google Scholar

  • 图 1  双面光调控Ga0.84In0.16As0.14Sb0.86 p-n结 (a)材料结构; (b)三维FDTD光学仿真设置

    Figure 1.  Illustration of the two-side light modulation structured Ga0.84In0.16As0.14Sb0.86 p-n junction: (a) Material structure; (b) cross-section of the three-dimensional FDTD optical simulation setup.

    图 2  纳米柱直径D对Ga0.84In0.16As0.14Sb0.86 p-n结光学特性的影响 (a)表面反射谱; (b)有源区光吸收谱

    Figure 2.  Effects of the nanopillar diameter D on the optical properties of the Ga0.84In0.16As0.14Sb0.86 p-n junction: (a) Surface reflectance spectrum; (b) absorption spectrum in active region.

    图 3  纳米柱填充因子F对Ga0.84In0.16As0.14Sb0.86 p-n结有源区的光吸收谱的影响

    Figure 3.  Effects of the nanopillar fill factor F on the absorption of the Ga0.84In0.16As0.14Sb0.86 p-n junction active region.

    图 4  不同光学结构下Ga0.84In0.16As0.14Sb0.86 p-n结有源区的光吸收谱 (a)NPA和BSR双面光调控结构; (b)NPA单面光调控结构; (c)表面1/4波长Si3N4增透膜和BSR双面光调控结构; (d)表面1/4波长Si3N4增透膜单面光调控结构. 其中NPA尺寸为H = 300 nm, D = 540 nm, F = 0.6, Si3N4增透膜的中心波长设计为1.6 µm

    Figure 4.  Absorption spectrums of the Ga0.84In0.16As0.14Sb0.86 p-n junction active region under different optical structures: (a) NPA-BSR two-side light modulation structure; (b) NPA one-side light modulation structure; (c) surface λ/4 Si3N4 anti-reflection film and BSR two-side light modulation structure; (d) surface λ/4 Si3N4 anti-reflection film one-side light modulation structure. The NPA geometry parameters are set as H = 300 nm, D = 540 nm and F = 0.6, central wavelength of the λ/4 Si3N4 anti-reflection film is set as 1.6 µm.

    图 5  室温(300 K)下Ga0.84In0.16As0.14Sb0.86 p-n结的IQE

    Figure 5.  IQE for Ga0.84In0.16As0.14Sb0.86 p-n junction diode at 300 K.

    图 6  不同复合参数下载流子收集效率谱C(λ)随波长λ和有源区总厚度L的变化 (a) τ0 =1 µs, SF = SB = 102 cm/s; (b) τ0 =10–3 µs, SF = SB = 102 cm/s; (c) τ0 =1 µs, SF = 106 cm/s, SB = 102 cm/s; (d) τ0 =1 µs, SF = 102 cm/s, SB = 106 cm/s. τ0为SRH复合本征寿命, SFSB分别为有源区前后表面复合速度

    Figure 6.  Dependence of the carrier collection efficiency spectrums C(λ) on λ and active region thickness L for different carrier recombination parameters: (a) τ0 =1 µs, SF = SB = 102 cm/s; (b) τ0 =10–3 µs, SF = SB = 102 cm/s; (c) τ0 =1 µs, SF = 106 cm/s, SB = 102 cm/s; (d) τ0 =1 µs, SF = 102 cm/s, SB = 106 cm/s.

    图 7  复合参数对不同厚度有源区量子效率谱QE(λ)的影响 (a) L = 1 µm; (b) L = 6 µm

    Figure 7.  Effects of the carrier recombination parameters on the quantum efficiency spectrums for different active region thickness L: (a) L = 1 µm; (b) L = 6 µm.

    图 8  各种复合机制所决定的扩散暗电流密度随有源区厚度L的变化

    Figure 8.  Dependence of the diffusion dark current densities on active region thickness L.

    图 9  室温下Ga0.84In0.16As0.14Sb0.86 p-n结的J0d随复合参数和L的变化

    Figure 9.  Dependence of the J0d on carrier recombination parameters and L for Ga0.84In0.16As0.14Sb0.86 p-n junction at room temperature.

    表 1  室温(300 K)下Ga0.84In0.16As0.14Sb0.86 p-n结有源区的结构和物理参数[27-29]

    Table 1.  Structure and physical parameters of the Ga0.84In0.16As0.14Sb0.86 p-n junction at room temperature (300 K)[27-29].

    材料结构参数 物理参数
    厚度/µm掺杂浓
    度/cm–3
    直接复合系
    数/(cm3·s–1)
    俄歇复合系
    数/(cm6·s–1)
    SRH本征复
    合寿命/µs
    表面复合
    速度/(cm·s–1)
    少子迁移
    率/(cm2·V·s–1)
    n型层0.21 × 1017 1 × 10–10Cn = 1 × 10–27τ0 = 10–3—1SF = 0—106µh = 618
    p型层L—0.2 1 × 1017 Cp = 2 × 10–28SB = 0—106µe = 5162
    DownLoad: CSV
  • [1]

    刘超 魏志鹏 安宁 何斌太 刘鹏程 刘国军 2014 物理学报 63 248102Google Scholar

    Liu C, Wei Z P, An N, He B T, Liu P C, Liu G J 2014 Acta Phys. Sin. 63 248102Google Scholar

    [2]

    Mitsuhara M, Ohiso Y, Matsuzaki H 2020 J. Cryst. Growth 535 125551Google Scholar

    [3]

    Hao H Y, Wang G W, Han X, Jiang D W, Sun, Y Y, Guo C Y, Xiang W, Xu Y Q and Niu Z C 2018 AIP Adv. 8 095106Google Scholar

    [4]

    Lou Y Y, Zhang X L, Huang A B, Wang Y 2018 Sol. Energ. Mat. Sol. C. 172 124

    [5]

    Liu Q, Marshall A, Kirer A 2019 Materials (Basel) 12 1743Google Scholar

    [6]

    Wang Y, Lou Y Y 2015 Renew. Energ. 75 8Google Scholar

    [7]

    You M H, Sun Q X, Yin L P, Fan J J, Liang X M, Li X, Yu X L, Li S J, Liu J S 2016 J. Nanomater. 2016 393502

    [8]

    Liang B L, Chen D Y, Wang B, Kwasniewski T A, Wang Z G 2010 IEEE T. Electron Dev. 57 361Google Scholar

    [9]

    Rothmayr F, Pfenning A, Kistner C, Koeth J, Knebl G, Schade A, Krueger S, Worschech L, Hartmann F, Höfling S 2018 Appl. Phys. Lett. 112 161107Google Scholar

    [10]

    Peng X C, Guo X, Zhang B L, Li X P, Zhao X W, Dong X, Zheng W, Du G T 2010 Infrared Phys. Techn. 53 37Google Scholar

    [11]

    秦飞飞 张海明 王彩霞 郭聪 张晶晶 2014 物理学报 63 198802Google Scholar

    Qin F F, Zhang H M, Wang C X, Guo C, Zhang J J 2014 Acta Phys. Sin. 63 198802Google Scholar

    [12]

    El-Batawy Y M, Deen M J 2003 Proc. SPIE 4999 363Google Scholar

    [13]

    Jiang A Q, Osamu Y, Chen L Y 2020 SCI REP-UK 10 12780Google Scholar

    [14]

    Chen H L, Cattoni A, Lépinau R D, Walker A W, Höhn O, Lackner D, Siefer G, Faustini M, Vandamme N, Goffard J, Behaghel B, Dupuis C, Bardou N, Dimroth F, Collin S 2019 Nat. energy 4 761Google Scholar

    [15]

    Amalathas A P, Alkaisi M M 2019 Micromachines 10 619Google Scholar

    [16]

    Proise F, Joudrier A, Pardo F, Pelouard J, Guillemoles J 2018 Opt. Express 26 A806Google Scholar

    [17]

    Yang Z H, Gao P Q, Zhang C, Li X F, Ye J C 2016 SCI REP-UK 6 30503Google Scholar

    [18]

    Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S, Luk’yanchuk B 2016 Science 354 aag2472Google Scholar

    [19]

    Jahani S, Jacob Z 2016 Nat. Nanotechnol. 11 23Google Scholar

    [20]

    Behaghel B, Tamaki R, Vandamme N, Watanabe K, Dupuis C, Bardou N, Sodabanlu H, Cattoni A, Okada Y, Sugiyama M, Collin S, Guillemoles J 2015 Appl. Phys. Lett. 106 081107Google Scholar

    [21]

    Peng X C, Wang Z D, Liu Y, Manos D M, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2019 Phys. Rev. Appl. 12 064002Google Scholar

    [22]

    彭新村, 王智栋, 曾梦丝, 刘云, 邹继军, 朱志甫, 邓文娟 2019 无机材料学报 34 734Google Scholar

    Peng X C, Wang Z D, Zeng M S, Liu Y, Zou J J, Zhu Z F, Deng W J 2019 J. Inorg. Mater. 34 734Google Scholar

    [23]

    Wang C A, Shiau D A, Murphy P G, O'Brien P W, Huang R K, Connors M K, Anderson A C, Donetsky D, Anikeev S, Belenky G, Depoy D M, Nichols G 2004 J. Electron. Mater. 33 213Google Scholar

    [24]

    彭新村 王智栋 邓文娟 朱志甫 邹继军 张益军 2020 物理学报 69 068501Google Scholar

    Peng X C, Wang Z D, Deng W J, Zhu Z F, Zou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar

    [25]

    Tian Y, Chua S J, Jin Y X 2003 Microelectron. J. 34 304

    [26]

    Peng X C, Poelker M, Stutzman M, Tang B, Zhang S K, Zou J J 2020 Opt. Express 28 860Google Scholar

    [27]

    Wang Y, Chen N F, Zhang X W, Huang T M, Yin Z G, Wang Y S, Zhang H 2010 Sol. Energ. Mat. Sol. C. 94 1704Google Scholar

    [28]

    Tang L L, Fraas L M, Liu Z M, Xu C, Chen X Y 2016 IEEE T. Electron Dev. 63 3591Google Scholar

    [29]

    Dashiell M W, Beausang J F, Ehsani H, Nichols G J, Depoy D M, Danielson L R, Talamo P, Rahner K D, Brown E J, Burger S R, Fourspring P M, Topper W F, Jr., Baldasaro P F, Wang C A, Huang R K, Connors M K, Turner G W, Shellenbarger Z A, Taylor G, Li J Z, Martinelli R, Donetski D, Anikeev S, Belenky G L, Luryi S 2006 IEEE T. Electron Dev. 53 2879Google Scholar

    [30]

    Groep J, Polman A 2013 Opt. Express 21 26285Google Scholar

    [31]

    Wang Z Y, Zhang R J, Wang S Y, Lu M, Chen X, Zheng Y X, Chen L Y, Ye Z, Wang C Z, Ho K M 2015 SCI REP-UK 5 7810Google Scholar

    [32]

    Wang C A 2004 AIP Conf. Proc. 738 255Google Scholar

  • [1] Wang Zi-Yao, Chen Fu-Jia, Xi Xiang, Gao Zhen, Yang Yi-Hao. Non-reciprocal topological photonics. Acta Physica Sinica, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [2] Zhao Yu-Chen, Zheng Jia-Huan, Wang Yong, Xi Xiao-Li, Song Hai-Zhi. Infrared broadband photoresponse characteristics of nanoporous NbN film. Acta Physica Sinica, 2022, 71(5): 058501. doi: 10.7498/aps.71.20211694
    [3] Qiu Zi-Yang, Chen Yan, Qiu Xiang-Gang. Infrared spectroscopic study of topological material BaMnSb2. Acta Physica Sinica, 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [4] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [5] Zhang Yi-Nan, Wang Li-Hua, Liu Hua-Jie, Fan Chun-Hai. DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics. Acta Physica Sinica, 2017, 66(14): 147101. doi: 10.7498/aps.66.147101
    [6] Guo De-Cheng, Jiang Xiao-Dong, Huang Jin, Xiang Xia, Wang Feng-Rui, Liu Hong-Jie, Zhou Xin-Da, Zu Xiao-Tao. Effect of raster scan number on damage resistance of KDP crystal irradiated by ultraviolet pulse laser. Acta Physica Sinica, 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [7] Liu Jun, Zhou Wei-Chang, Zhang Jian-Fu. Synthesis and photonics characteristics research of CdS:Cu 1D nanostructures. Acta Physica Sinica, 2012, 61(20): 206101. doi: 10.7498/aps.61.206101
    [8] Su Bin, Gong Bo-Yi, Zhao Xiao-Peng. Numerical simulation of leaf-shaped metamaterial absorber at infrared frequency. Acta Physica Sinica, 2012, 61(14): 144203. doi: 10.7498/aps.61.144203
    [9] Liu Shuo, Li Shu-Guang, Fu Bo, Zhou Hong-Song, Feng Rong-Pu. Analysis of coupling characteristics of midinfrared high polarization chalcogenide glass dual-core photonic crystal fiber. Acta Physica Sinica, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [10] Wang Hong-Xia, Zhou Zhan-Rong, Zhang Qing-Hua, Ma Jin, Liu Dai-Zhi. Numerical calculation of infrared extinction for carbon nanofibers. Acta Physica Sinica, 2010, 59(9): 6111-6117. doi: 10.7498/aps.59.6111
    [11] Zhang Chun-Lin, Chen Xiao-Bo, Yu Chun-Lei, Hu Li-Li, Pan Wei, Wu Zheng-Long, Liao Hong-Bo. Infrared multi-photon quantum cutting of Er-doped nanophase oxyfluoride vitroceramics. Acta Physica Sinica, 2010, 59(7): 5091-5099. doi: 10.7498/aps.59.5091
    [12] Zhou Li-Gang, Shen Wen-Zhong. GaN/AlGaN dual-band infrared detection and photon frequency upconversion. Acta Physica Sinica, 2009, 58(10): 6863-6872. doi: 10.7498/aps.58.6863
    [13] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jia Xiao-Peng, Li Gui-Ju. Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis. Acta Physica Sinica, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [14] Huang Duo-Hui, Wang Fan-Hou, Min Jun, Zhu Zheng-He. Study on structure characteristics of MgO molecule under external electric field. Acta Physica Sinica, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [15] Wang Ke, Zheng Wan-Hua, Ren Gang, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors. Acta Physica Sinica, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [16] Chen Wei-Lan, Gu Pei-Fu, Wang Ying, Zhang Yue-Guang, Liu Xu. Analysis of the thermal stress in infrared films. Acta Physica Sinica, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [17] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [18] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [19] WANG ZHENG-MIN, YANG LI-SHU, LIU ZONG-CAI, WU CHUANG-XIU. THE OPTOTHERMAL SPECTRA OF INFRARED MULTIPHOTON ABSORPTION OF CF3CDCl2. Acta Physica Sinica, 1988, 37(4): 670-673. doi: 10.7498/aps.37.670
    [20] GAN ZI ZHAO, YANG GUO-ZHEN, FENG KE-AN, HUANG XI-YI. A THEORY OF MULTIPHOTON DISSOCIATION OF MOLECULES IN AN INTENSE I. R. LASER FIELD. Acta Physica Sinica, 1978, 27(4): 480-482. doi: 10.7498/aps.27.480
Metrics
  • Abstract views:  4478
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2020
  • Accepted Date:  04 January 2021
  • Available Online:  22 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回