Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization

Liu Xuan-Xuan Guo Hong-Xuan Xu Tao Yin Kui-Bo Sun Li-Tao

Citation:

In-situ liquid phase transmission electron microscope and its application in nanoparticle characterization

Liu Xuan-Xuan, Guo Hong-Xuan, Xu Tao, Yin Kui-Bo, Sun Li-Tao
PDF
HTML
Get Citation
  • Based on the improvement of transmission electron microscope (TEM), nano fabrication, and film deposition, and with the development of the in-situ liquid TEM and nano characterization platform, various relevant nano researches have been carried in different fields. In this article, the principle, basic design requirements, development and typical preparation technologies of the liquid cell are briefly introduced. Subsequently, the state-of-the-art applications of liquid cell transmission electron microscope in the nucleation and growth of nanoparticles are reviewed. Finally, the opportunities and challenges faced by the frontier development of this technology are also discussed. This article provides constructive discussion about and support for advanced nano characterization technology and precise manipulation of atomic structures.
      Corresponding author: Guo Hong-Xuan, ghx@seu.edu.cn ; Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874105) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 11525415)
    [1]

    Abrams I, Mcbain J 1944 Science 100 273Google Scholar

    [2]

    Xu T, Sun L 2016 Superlattice Microstruct. 99 24

    [3]

    Hansen T W, Wagner J B, Dunin-Borkowski R E 2010 Mater. Sci. Technol. 26 1338

    [4]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [5]

    Miyata T, Mizoguchi T 2017 Ultramicroscopy 178 81

    [6]

    Tromp R M, Hull R, Vereecken P M, Williamson M J, Ross F M 2003 Nat. Mater. 2 532

    [7]

    Zheng H, Smith R K, Jun Y, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1306Google Scholar

    [8]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61Google Scholar

    [9]

    Rasool H, Dunn G, Fathalizadeh A, Zettl A 2016 Phys. Status Solidi B 253 2351Google Scholar

    [10]

    Haider M H M, Rose H R H, Uhlemann S U S, Kabius B K B, Urban K U K 1998 J. Electron. Microsc. 47 395

    [11]

    Liao H G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H 2014 Science 345 916Google Scholar

    [12]

    Evans J E, Jungjohann K L, Browning N D, Arslan I 2011 Nano Lett. 11 2809

    [13]

    Park J, Zheng H, Lee W C, Geissler P L, Rabani E, Alivisatos A P 2012 ACS Nano 6 2078

    [14]

    Li D, Nielsen M H, Jonathan R I L, Frandsen C, Banfield J F, James J D Y 2012 Science 336 1014Google Scholar

    [15]

    Zhu G, Jiang Y, Lin F, Zhang H, Jin C, Yuan J, Yang D, Zhang Z 2014 Chem. Commun. 50 9447Google Scholar

    [16]

    Nielsen M H, Aloni S, De Yoreo J J 2014 Science 345 1158Google Scholar

    [17]

    Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos A P 2015 ACS Cent. Sci. 1 33

    [18]

    Liu J, Wang Z, Sheng A, Liu F, Qin F, Wang Z L 2016 Environ. Sci. Technol. 50 5606Google Scholar

    [19]

    Tan S F, Chee S W, Lin G, Bosman M, Lin M, Mirsaidov U, Nijhuis C A 2016 J. Am. Chem. Soc. 138 5190Google Scholar

    [20]

    Dong M, Wang W, Wei W, Hu X, Qin M, Zhang Q, Sun L, Xu F 2019 J. Phys. Chem. C 123 21257Google Scholar

    [21]

    Zheng H, Claridge S A, Minor A M, Alivisatos A P, Dahmen U 2009 Nano Lett. 9 2460Google Scholar

    [22]

    Grogan J M, Rotkina L, Bau H H 2011 Phys. Rev. E: Stat., Nonlin., Soft Matter Phys. 83 61405Google Scholar

    [23]

    Chee S W, Baraissov Z, Loh N D, Matsudaira P T, Mirsaidov U 2016 J. Phys. Chem. C 120 20462Google Scholar

    [24]

    Chee S W, Anand U, Bisht G, Tan S F, Mirsaidov U 2019 Nano Lett. 19 2871Google Scholar

    [25]

    Radisic A, Vereecken P M, Hannon J B, Searson P C, Ross F M 2006 Nano Lett. 6 238Google Scholar

    [26]

    Radisic A, Vereecken P M, Searson P C, Ross F M 2006 Surf. Sci. 600 1817Google Scholar

    [27]

    Tan S F, Lin G, Bosman M, Mirsaidov U, Nijhuis C A 2016 ACS Nano 10 7689Google Scholar

    [28]

    Lutz L, Dachraoui W, Demortière A, Johnson L R, Bruce P G, Grimaud A, Tarascon J 2018 Nano Lett. 18 1280Google Scholar

    [29]

    Nagashima S, Ikai T, Sasaki Y, Kawasaki T, Hatanaka T, Kato H, Kishita K 2019 Nano Lett. 19 7000Google Scholar

    [30]

    Liu K L, Wu C C, Huang Y J, Peng H L, Chang H Y, Chang P, Hsu L, Yew T R 2008 Lab Chip 8 1915Google Scholar

    [31]

    Jonge N D, Peckys D B, Kremers G J, Piston D W 2009 Proc. Natl. Acad. Sci. U.S.A. 106 2159Google Scholar

    [32]

    Park J, Park H, Ercius P, Pegoraro A F, Xu C, Kim J W, Han S H, Weitz D A 2015 Nano Lett. 15 4737Google Scholar

    [33]

    Dahmke I N, Verch A, Hermannsdörfer J, Peckys D B, Weatherup R S, Hofmann S, de Jonge N 2017 ACS Nano 11 11108Google Scholar

    [34]

    Gu M, Parent L R, Mehdi B L, Unocic R R, McDowell M T, Sacci R L, Xu W, Connell J G, Xu P, Abellan P, Chen X, Zhang Y, Perea D E, Evans J E, Lauhon L J, Zhang J, Liu J, Browning N D, Cui Y, Arslan I, Wang C 2013 Nano Lett. 13 6106Google Scholar

    [35]

    Mehdi B L, Qian J, Nasybulin E, Park C, Welch D A, Faller R, Mehta H, Henderson W A, Xu W, Wang C M, Evans J E, Liu J, Zhang J G, Mueller K T, Browning N D 2015 Nano Lett. 15 2168Google Scholar

    [36]

    Seo H K, Hwa Y, Chang J H, Park J Y, Lee J S, Park J, Cairns E J, Yuk J M 2020 Nano Lett. 20 2080Google Scholar

    [37]

    Zeng Z, Liang W, Liao H, Xin H L, Chu Y, Zheng H 2014 Nano Lett. 14 1745Google Scholar

    [38]

    Zeng Z, Zhang X, Bustillo K, Niu K, Gammer C, Xu J, Zheng H 2015 Nano Lett. 15 5214Google Scholar

    [39]

    Cheong J Y, Chang J H, Seo H K, Yuk J M, Shin J W, Lee J Y, Kim I 2016 Nano Energy 25 154Google Scholar

    [40]

    Wu J, Gao W, Yang H, Zuo J 2017 ACS Nano 11 1696Google Scholar

    [41]

    Shan H, Gao W, Xiong Y, Shi F, Yan Y, Ma Y, Shang W, Tao P, Song C, Deng T, Zhang H, Yang D, Pan X, Wu J 2018 Nat. Commun. 9 1011Google Scholar

    [42]

    陕皓 2018 博士学位论文 (上海: 交通大学)

    Shan H 2018 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [43]

    Lu Y, Yin W, Peng K, Wang K, Hu Q, Selloni A, Chen F, Liu L, Sui M 2018 Nat. Commun. 9 2752Google Scholar

    [44]

    Kashin A S, Ananikov V P 2019 Nat. Rev. Chem. 3 624Google Scholar

    [45]

    Kröger R, erch A V 2018 Minerals 8 21Google Scholar

    [46]

    Tanase M, Winterstein J, Sharma R, Aksyuk V, Holland G, Liddle J A 2015 Microsc. Microanal. 21 1629

    [47]

    Niels D J, Lothar H, Rafal E D, Frances M R 2019 Nat. Rev. Mater. 4 61Google Scholar

    [48]

    Woehl T J, Evans J E, Arslan I, Ristenpart W D, Browning N D 2012 ACS Nano 6 8599Google Scholar

    [49]

    Sutter E A, Sutter P W 2014 J. Am. Chem. Soc. 136 16865Google Scholar

    [50]

    Ambrožič B, Prašnikar A, Hodnik N, Kostevšek N, Likozar B, Rožman K Ž, Šturm S 2019 Chem. Sci. 10 8735Google Scholar

    [51]

    胡奇, 金传洪 2019 物理化学学报 35 101Google Scholar

    Hu Q, Jin C H 2019 Acta Phys.-Chim. Sin. 35 101Google Scholar

    [52]

    Schneider N M, Norton M M, Mendel B J, Grogan J M, Ross F M, Bau H H 2014 J. Phys. Chem. C 118 22373Google Scholar

    [53]

    Wang C, Shokuhfar T, Klie R F 2016 Adv. Mater. 28 7716Google Scholar

    [54]

    Grogan J M, Schneider N M, Ross F M, Bau H H 2013 Nano Lett. 14 359Google Scholar

    [55]

    Shin D, Park J B, Kim Y, Kim S J, Kang J H, Lee B, Cho S, Hong B H, Novoselov K S 2015 Nat. Commun. 6 6068Google Scholar

    [56]

    Zhu G, Jiang Y, Huang W, Zhang H, Lin F, Jin C 2013 Chem. Commun. 49 10944Google Scholar

    [57]

    Hwang S, Chen X, Zhou G, Su D 2019 Adv. Energy Mater. 10 1902105Google Scholar

    [58]

    Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E, Tenney S, Sutter P 2014 Nat. Commun. 5 4946Google Scholar

    [59]

    Cho H, Jones M R, Nguyen S C, Hauwiller M R, Zettl A, Alivisatos A P 2016 Nano Lett. 17 414

    [60]

    Pu S, Gong C, Robertson A W 2020 R. Soc. Open Sci. 7 191204Google Scholar

    [61]

    White E R, Mecklenburg M, Shevitski B, Singer S B, Regan B C 2012 Langmuir 28 3695Google Scholar

    [62]

    Bhuyan M K, Soleilhac A, Somayaji M, Itina T E, Antoine R, Stoian R 2018 Sci. Rep. 8 9665Google Scholar

    [63]

    Fu X, Chen B, Tang J, Hassan M T, Zewail A H 2017 Science 355 494Google Scholar

    [64]

    Fu X, Chen B, Tang J, Zewail A H 2017 Sci. Adv. 3 e1701160Google Scholar

    [65]

    王文, 徐涛, 孙立涛 2018 电子显微学报 37 500Google Scholar

    Wang W, Xu T, Sun L T 2018 J. Chin. Electron Microsc. Soc. 37 500Google Scholar

    [66]

    Yang J, Choi M K, Sheng Y, Jung J, Bustillo K, Chen T, Lee S, Ercius P, Kim J H, Warner J H, Chan E M, Zheng H 2019 Nano Lett. 19 1788Google Scholar

    [67]

    Zhu C, Liang S, Song E, Zhou Y, Wang W, Shan F, Shi Y, Hao C, Yin K, Zhang T, Liu J, Zheng H, Sun L 2018 Nat. Commun. 9 421Google Scholar

    [68]

    Wei W, Zhang H, Wang W, Dong M, Nie M, Sun L, Xu F 2019 ACS Appl. Mater. Inter. 11 24478Google Scholar

    [69]

    Liao H, Cui L, Whitelam S, Zheng H 2012 Science 336 1011Google Scholar

    [70]

    Franks R, Morefield S, Wen J, Liao D, Alvarado J, Strano M, Marsh C 2008 J. Nanosci. Nanotechnol. 8 4404Google Scholar

    [71]

    Grogan J M, Bau H H 2010 J. Microelectromech. Syst. 19 885Google Scholar

    [72]

    Denoual M, Menon V, Sato T, de Sagazan O, Coleman A W, Fujita H 2018 Meas. Sci. Technol. 30 17001Google Scholar

    [73]

    Tai K, Liu Y, Dillon S J 2014 Microsc. Microanal. 20 330Google Scholar

    [74]

    de Jonge N, Ross F M 2011 Nat. Nanotechnol. 6 695Google Scholar

    [75]

    胡奇 2018 硕士学位论文 (杭州: 浙江大学)

    Hu Q 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [76]

    Chen X, Li C, Cao H 2015 Nanoscale 7 4811Google Scholar

    [77]

    Textor M, de Jonge N 2018 Nano Lett. 18 3313Google Scholar

    [78]

    Yang J, Alam S B, Yu L, Chan E, Zheng H 2019 Micron 116 22Google Scholar

    [79]

    Hutzler A, Schmutzler T, Jank M P M, Branscheid R, Unruh T, Spiecker E, Frey L 2018 Nano Lett. 18 7222Google Scholar

    [80]

    Liao H, Zheng H 2016 Annu. Rev. Phys. Chem. 67 719Google Scholar

    [81]

    Maxwell J C 1908 London, Edinburgh Dublin Philos. Mag. J. Sci. 16 818Google Scholar

    [82]

    Nielsen M H, Li D, Zhang H, Aloni S, Han T Y, Frandsen C, Seto J, Banfield J F, Cölfen H, De Yoreo J J 2014 Microsc. Microanal. 20 425Google Scholar

    [83]

    Vekilov P G 2010 Nanoscale 2 2346Google Scholar

    [84]

    付贵珍 2013 山东陶瓷 36 18Google Scholar

    Fu G 2013 Shandong Ceram. 36 18Google Scholar

    [85]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nat. Chem. 9 77Google Scholar

    [86]

    Voorhees P W 1985 J. Stat. Phys. 38 231Google Scholar

    [87]

    李东祥, 高媛媛, 张晓芳, 夏海兵 2019 化学学报 77 305Google Scholar

    Li D X, Gao Y Y, Zhang X F, Xia H B 2019 Acta Chem. Sin. (Chin. Ed.) 77 305Google Scholar

    [88]

    LaMer V K, Dinegar R H 1950 J. Am. Chem. Soc. 72 4847Google Scholar

    [89]

    Chen Y, Chen J, Wu W 2017 J. Phys. Chem. C 121 26069Google Scholar

    [90]

    Banfield J, Welch S, Zhang H, Ebert T, Penn R 2000 Science 289 751Google Scholar

    [91]

    Liao H, Zheng H 2013 J. Am. Chem. Soc. 135 5038Google Scholar

    [92]

    Jungjohann K L, Bliznakov S, Sutter P W, Stach E A, Sutter E A 2013 Nano Lett. 13 2964Google Scholar

    [93]

    Wu J, Gao W, Wen J, Miller D J, Lu P, Zuo J, Yang H 2015 Nano Lett. 15 2711Google Scholar

    [94]

    Chen F, Chen J, Lin Y, Kuo M, Hsu Y, Wu W 2019 Nanoscale 11 10486Google Scholar

    [95]

    Su T, Wang Z L, Wang Z 2019 Small 15 1900050Google Scholar

    [96]

    Vailonis K M, Gnanasekaran K, Powers X B, Gianneschi N C, Jenkins D M 2019 J. Am. Chem. Soc. 141 10177Google Scholar

    [97]

    Hauwiller M R, Zhang X, Liang W, Chiu C, Zhang Q, Zheng W, Ophus C, Chan E M, Czarnik C, Pan M, Ross F M, Wu W, Chu Y, Asta M, Voorhees P W, Alivisatos A P, Zheng H 2018 Nano Lett. 18 6427Google Scholar

    [98]

    Yang J, Zeng Z, Kang J, Betzler S, Czarnik C, Zhang X, Ophus C, Yu C, Bustillo K, Pan M, Qiu J, Wang L, Zheng H 2019 Nat. Mater. 18 970Google Scholar

    [99]

    Zheng W, Hauwiller M R, Liang W, Ophus C, Ercius P, Chan E M, Chu Y, Asta M, Du X, Alivisatos A P, Zheng H 2019 Nano Res. 12 2889Google Scholar

    [100]

    Parent L R, Robinson D B, Woehl T J, Ristenpart W D, Evans J E, Browning N D, Arslan I 2012 ACS Nano 6 3589Google Scholar

    [101]

    Verch A, Pfaff M, de Jonge N 2015 Langmuir 31 6956Google Scholar

    [102]

    陈新, 李唱, 柯凯 2017 科学通报 62 2886Google Scholar

    Chen X, Li C, Ke K 2017 Sci. Bull. 62 2886Google Scholar

  • 图 1  三类液体环境TEM实现方式示意图 (a)基于差分泵真空系统TEM结构示意图[3]; (b), (c) 基于离子液体构建的液体环境TEM实验装置示意图[4]; (d) 基于液体腔构建的液体环境TEM实验装置示意图; (e), (f)基于微纳加工制备的氮化硅窗口液体腔结构示意图[6,7]; (g), (h)基于石墨烯窗口的液体腔结构示意图[8,9]

    Figure 1.  Schematic diagrams of three typical methods to observe liquid sample by TEM: (a) Environment TEM based on differential pump system[3]; (b), (c) observation of the ionic liquid sample by TEM[4]; (d) schematic diagram of closed liquid cell for TEM observation; (e), (f) schematic diagrams of the liquid cell with the silicon nitride window[6,7]; (g), (h) schematic diagrams of the liquid cell with the graphene window[8,9].

    图 2  典型的液体腔基本结构示意图

    Figure 2.  Schematic diagram of the structure of a typical liquid cell.

    图 3  氮化硅窗口液体腔的发展情况

    Figure 3.  The development of the silicon nitride window liquid cell.

    图 4  典型的TEM 原位液体腔制作工艺步骤示意图 (a) 液体腔的基本结构图, 为方便结构解析, (b), (c) 沿黑色虚线剖面结构; (b) 典型的制作工艺步骤, 通过不同工艺分别制作上下两部分结构, 最后组装成(c)结构; (c) 液体腔的基本结构图剖面图

    Figure 4.  Typical TEM liquid cell manufacturing process: (a) The structure diagram of the liquid cell, where description (b) and (c) are cross-sectional diagram drawn along the black dash; (b) typical manufacturing process steps, the upper and lower parts are made by different processes structure, finally assembled into (c) the structure of the liquid cell with the cross-sectional view.

    图 5  附加功能的液体腔结构示意图 (a) 附加电极的流动式液体腔结构示意图[6]; (b) 附加加热功能的液体腔结构示意图[72]

    Figure 5.  Liquid cell with additional functions: (a) Fluidic liquid cell with electrodes[6]; (b) liquid cell with heater[72]

    图 6  典型的石墨烯液体腔制作工艺步骤示意图 (a) 两个石墨烯沉积的TEM网格相互叠加; (b) 滴加溶液并吸去多余的溶液; (c) 少量残留的液体压入微米或纳米级的囊中; (d) 移除上层TEM网格

    Figure 6.  Typical manufacturing process of the graphene liquid cell: (a) Two graphene deposited TEM grids are superimposed; (b) extra solution is removed by suction after dropping; (c) solution is entrapped between two graphene membranes after drying; (d) top TEM grid is removed.

    图 7  两种典型的石墨烯液体腔结构示意图 (a)石墨烯液体腔结构示意图; (b)硅基-石墨烯液体腔结构示意图

    Figure 7.  Schematic diagram of two typical graphene liquid cell structures: (a) Graphene liquid cavity structure; (b) silicon-based graphene liquid cavity structure.

    图 8  金纳米颗粒的成核过程的TEM时序图像[82] (a)−(d)金纳米颗粒在溶液中的形核过程; (e)−(n) 选自(a)中黑框区域的成核情况, 圆圈标定的粒子在成核过程中溶解

    Figure 8.  TEM time series images of the nucleation process of gold nanoparticles[82]: (a)−(d) Nucleation process of gold nanoparticles in solution; (e)−(n) nucleation situation of the black frame area in (a) is selected, where particles demarcated by the circle are dissolved during the nucleation process.

    图 9  金和银在溶液中成核的三步途径[85] (a)金纳米粒子成核的三个阶段演化图像; (b)成核步骤示意图; (c)银纳米粒子成核的三个阶段演化图像

    Figure 9.  The three-step pathway of gold and silver nucleation in solution[85]: (a) Three-stage evolution image of gold nanoparticle nucleation; (b) schematic diagram of nucleation step; (c) three-stage evolution image of silver nanoparticle nucleation.

    图 10  原位液体电镜下纳米晶的生长过程 (a) Pt 纳米粒子生长的TEM时序图像, 左侧为纳米粒子通过单体生长的过程, 右侧为纳米粒子聚合生长过程[7]; (b) Pt纳米粒子特定晶相的聚合生长过程的TEM时序图像[8]

    Figure 10.  Growth process of nanocrystals observed by in-situ liquid electron microscope: (a) TEM time series images of Pt nanoparticle growth, the left side is the process of nanoparticle growth through monomer, and the right side is the process of nanoparticle aggregation growth[7]; (b) TEM time series images of the polymerization growth process of the specific crystal phase of Pt nanoparticles[8]

    图 11  纳米晶体在溶液中的定向吸附过程[69] (a) 弛豫阶段纳米晶体的结构变化; (b)不同长度纳米线的矫直过程

    Figure 11.  The directional adsorption process of nanocrystals in solution[69]: (a) Structural evolution of nanocrystals in the relaxation phase; (b) straightening process of nanowires of different lengths.

    图 12  Pt二十面体上Au的生长[93] (a) TEM时序图像显示了Au在Pt二十面体纳米颗粒上的生长过程, 箭头代表Au的生长变化位置; (b) Pt纳米晶体上Au的成核和生长的定量分析, 方程是考虑了反应和扩散的增长率

    Figure 12.  Au growth on a Pt icosahedron[93]: (a) TEM sequence image shows the growth process of Au on Pt icosahedral nanoparticles, and the arrow represents the growth and change position of Au; (b) quantitative analysis of Au nucleation and growth on Pt nanocrystals, the equation is to consider the growth rate of reaction and diffusion.

  • [1]

    Abrams I, Mcbain J 1944 Science 100 273Google Scholar

    [2]

    Xu T, Sun L 2016 Superlattice Microstruct. 99 24

    [3]

    Hansen T W, Wagner J B, Dunin-Borkowski R E 2010 Mater. Sci. Technol. 26 1338

    [4]

    Huang J Y, Zhong L, Wang C M, Sullivan J P, Xu W, Zhang L Q, Mao S X, Hudak N S, Liu X H, Subramanian A, Fan H, Qi L, Kushima A, Li J 2010 Science 330 1515Google Scholar

    [5]

    Miyata T, Mizoguchi T 2017 Ultramicroscopy 178 81

    [6]

    Tromp R M, Hull R, Vereecken P M, Williamson M J, Ross F M 2003 Nat. Mater. 2 532

    [7]

    Zheng H, Smith R K, Jun Y, Kisielowski C, Dahmen U, Alivisatos A P 2009 Science 324 1306Google Scholar

    [8]

    Yuk J M, Park J, Ercius P, Kim K, Hellebusch D J, Crommie M F, Lee J Y, Zettl A, Alivisatos A P 2012 Science 336 61Google Scholar

    [9]

    Rasool H, Dunn G, Fathalizadeh A, Zettl A 2016 Phys. Status Solidi B 253 2351Google Scholar

    [10]

    Haider M H M, Rose H R H, Uhlemann S U S, Kabius B K B, Urban K U K 1998 J. Electron. Microsc. 47 395

    [11]

    Liao H G, Zherebetskyy D, Xin H, Czarnik C, Ercius P, Elmlund H, Pan M, Wang L W, Zheng H 2014 Science 345 916Google Scholar

    [12]

    Evans J E, Jungjohann K L, Browning N D, Arslan I 2011 Nano Lett. 11 2809

    [13]

    Park J, Zheng H, Lee W C, Geissler P L, Rabani E, Alivisatos A P 2012 ACS Nano 6 2078

    [14]

    Li D, Nielsen M H, Jonathan R I L, Frandsen C, Banfield J F, James J D Y 2012 Science 336 1014Google Scholar

    [15]

    Zhu G, Jiang Y, Lin F, Zhang H, Jin C, Yuan J, Yang D, Zhang Z 2014 Chem. Commun. 50 9447Google Scholar

    [16]

    Nielsen M H, Aloni S, De Yoreo J J 2014 Science 345 1158Google Scholar

    [17]

    Chen Q, Cho H, Manthiram K, Yoshida M, Ye X, Alivisatos A P 2015 ACS Cent. Sci. 1 33

    [18]

    Liu J, Wang Z, Sheng A, Liu F, Qin F, Wang Z L 2016 Environ. Sci. Technol. 50 5606Google Scholar

    [19]

    Tan S F, Chee S W, Lin G, Bosman M, Lin M, Mirsaidov U, Nijhuis C A 2016 J. Am. Chem. Soc. 138 5190Google Scholar

    [20]

    Dong M, Wang W, Wei W, Hu X, Qin M, Zhang Q, Sun L, Xu F 2019 J. Phys. Chem. C 123 21257Google Scholar

    [21]

    Zheng H, Claridge S A, Minor A M, Alivisatos A P, Dahmen U 2009 Nano Lett. 9 2460Google Scholar

    [22]

    Grogan J M, Rotkina L, Bau H H 2011 Phys. Rev. E: Stat., Nonlin., Soft Matter Phys. 83 61405Google Scholar

    [23]

    Chee S W, Baraissov Z, Loh N D, Matsudaira P T, Mirsaidov U 2016 J. Phys. Chem. C 120 20462Google Scholar

    [24]

    Chee S W, Anand U, Bisht G, Tan S F, Mirsaidov U 2019 Nano Lett. 19 2871Google Scholar

    [25]

    Radisic A, Vereecken P M, Hannon J B, Searson P C, Ross F M 2006 Nano Lett. 6 238Google Scholar

    [26]

    Radisic A, Vereecken P M, Searson P C, Ross F M 2006 Surf. Sci. 600 1817Google Scholar

    [27]

    Tan S F, Lin G, Bosman M, Mirsaidov U, Nijhuis C A 2016 ACS Nano 10 7689Google Scholar

    [28]

    Lutz L, Dachraoui W, Demortière A, Johnson L R, Bruce P G, Grimaud A, Tarascon J 2018 Nano Lett. 18 1280Google Scholar

    [29]

    Nagashima S, Ikai T, Sasaki Y, Kawasaki T, Hatanaka T, Kato H, Kishita K 2019 Nano Lett. 19 7000Google Scholar

    [30]

    Liu K L, Wu C C, Huang Y J, Peng H L, Chang H Y, Chang P, Hsu L, Yew T R 2008 Lab Chip 8 1915Google Scholar

    [31]

    Jonge N D, Peckys D B, Kremers G J, Piston D W 2009 Proc. Natl. Acad. Sci. U.S.A. 106 2159Google Scholar

    [32]

    Park J, Park H, Ercius P, Pegoraro A F, Xu C, Kim J W, Han S H, Weitz D A 2015 Nano Lett. 15 4737Google Scholar

    [33]

    Dahmke I N, Verch A, Hermannsdörfer J, Peckys D B, Weatherup R S, Hofmann S, de Jonge N 2017 ACS Nano 11 11108Google Scholar

    [34]

    Gu M, Parent L R, Mehdi B L, Unocic R R, McDowell M T, Sacci R L, Xu W, Connell J G, Xu P, Abellan P, Chen X, Zhang Y, Perea D E, Evans J E, Lauhon L J, Zhang J, Liu J, Browning N D, Cui Y, Arslan I, Wang C 2013 Nano Lett. 13 6106Google Scholar

    [35]

    Mehdi B L, Qian J, Nasybulin E, Park C, Welch D A, Faller R, Mehta H, Henderson W A, Xu W, Wang C M, Evans J E, Liu J, Zhang J G, Mueller K T, Browning N D 2015 Nano Lett. 15 2168Google Scholar

    [36]

    Seo H K, Hwa Y, Chang J H, Park J Y, Lee J S, Park J, Cairns E J, Yuk J M 2020 Nano Lett. 20 2080Google Scholar

    [37]

    Zeng Z, Liang W, Liao H, Xin H L, Chu Y, Zheng H 2014 Nano Lett. 14 1745Google Scholar

    [38]

    Zeng Z, Zhang X, Bustillo K, Niu K, Gammer C, Xu J, Zheng H 2015 Nano Lett. 15 5214Google Scholar

    [39]

    Cheong J Y, Chang J H, Seo H K, Yuk J M, Shin J W, Lee J Y, Kim I 2016 Nano Energy 25 154Google Scholar

    [40]

    Wu J, Gao W, Yang H, Zuo J 2017 ACS Nano 11 1696Google Scholar

    [41]

    Shan H, Gao W, Xiong Y, Shi F, Yan Y, Ma Y, Shang W, Tao P, Song C, Deng T, Zhang H, Yang D, Pan X, Wu J 2018 Nat. Commun. 9 1011Google Scholar

    [42]

    陕皓 2018 博士学位论文 (上海: 交通大学)

    Shan H 2018 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese)

    [43]

    Lu Y, Yin W, Peng K, Wang K, Hu Q, Selloni A, Chen F, Liu L, Sui M 2018 Nat. Commun. 9 2752Google Scholar

    [44]

    Kashin A S, Ananikov V P 2019 Nat. Rev. Chem. 3 624Google Scholar

    [45]

    Kröger R, erch A V 2018 Minerals 8 21Google Scholar

    [46]

    Tanase M, Winterstein J, Sharma R, Aksyuk V, Holland G, Liddle J A 2015 Microsc. Microanal. 21 1629

    [47]

    Niels D J, Lothar H, Rafal E D, Frances M R 2019 Nat. Rev. Mater. 4 61Google Scholar

    [48]

    Woehl T J, Evans J E, Arslan I, Ristenpart W D, Browning N D 2012 ACS Nano 6 8599Google Scholar

    [49]

    Sutter E A, Sutter P W 2014 J. Am. Chem. Soc. 136 16865Google Scholar

    [50]

    Ambrožič B, Prašnikar A, Hodnik N, Kostevšek N, Likozar B, Rožman K Ž, Šturm S 2019 Chem. Sci. 10 8735Google Scholar

    [51]

    胡奇, 金传洪 2019 物理化学学报 35 101Google Scholar

    Hu Q, Jin C H 2019 Acta Phys.-Chim. Sin. 35 101Google Scholar

    [52]

    Schneider N M, Norton M M, Mendel B J, Grogan J M, Ross F M, Bau H H 2014 J. Phys. Chem. C 118 22373Google Scholar

    [53]

    Wang C, Shokuhfar T, Klie R F 2016 Adv. Mater. 28 7716Google Scholar

    [54]

    Grogan J M, Schneider N M, Ross F M, Bau H H 2013 Nano Lett. 14 359Google Scholar

    [55]

    Shin D, Park J B, Kim Y, Kim S J, Kang J H, Lee B, Cho S, Hong B H, Novoselov K S 2015 Nat. Commun. 6 6068Google Scholar

    [56]

    Zhu G, Jiang Y, Huang W, Zhang H, Lin F, Jin C 2013 Chem. Commun. 49 10944Google Scholar

    [57]

    Hwang S, Chen X, Zhou G, Su D 2019 Adv. Energy Mater. 10 1902105Google Scholar

    [58]

    Sutter E, Jungjohann K, Bliznakov S, Courty A, Maisonhaute E, Tenney S, Sutter P 2014 Nat. Commun. 5 4946Google Scholar

    [59]

    Cho H, Jones M R, Nguyen S C, Hauwiller M R, Zettl A, Alivisatos A P 2016 Nano Lett. 17 414

    [60]

    Pu S, Gong C, Robertson A W 2020 R. Soc. Open Sci. 7 191204Google Scholar

    [61]

    White E R, Mecklenburg M, Shevitski B, Singer S B, Regan B C 2012 Langmuir 28 3695Google Scholar

    [62]

    Bhuyan M K, Soleilhac A, Somayaji M, Itina T E, Antoine R, Stoian R 2018 Sci. Rep. 8 9665Google Scholar

    [63]

    Fu X, Chen B, Tang J, Hassan M T, Zewail A H 2017 Science 355 494Google Scholar

    [64]

    Fu X, Chen B, Tang J, Zewail A H 2017 Sci. Adv. 3 e1701160Google Scholar

    [65]

    王文, 徐涛, 孙立涛 2018 电子显微学报 37 500Google Scholar

    Wang W, Xu T, Sun L T 2018 J. Chin. Electron Microsc. Soc. 37 500Google Scholar

    [66]

    Yang J, Choi M K, Sheng Y, Jung J, Bustillo K, Chen T, Lee S, Ercius P, Kim J H, Warner J H, Chan E M, Zheng H 2019 Nano Lett. 19 1788Google Scholar

    [67]

    Zhu C, Liang S, Song E, Zhou Y, Wang W, Shan F, Shi Y, Hao C, Yin K, Zhang T, Liu J, Zheng H, Sun L 2018 Nat. Commun. 9 421Google Scholar

    [68]

    Wei W, Zhang H, Wang W, Dong M, Nie M, Sun L, Xu F 2019 ACS Appl. Mater. Inter. 11 24478Google Scholar

    [69]

    Liao H, Cui L, Whitelam S, Zheng H 2012 Science 336 1011Google Scholar

    [70]

    Franks R, Morefield S, Wen J, Liao D, Alvarado J, Strano M, Marsh C 2008 J. Nanosci. Nanotechnol. 8 4404Google Scholar

    [71]

    Grogan J M, Bau H H 2010 J. Microelectromech. Syst. 19 885Google Scholar

    [72]

    Denoual M, Menon V, Sato T, de Sagazan O, Coleman A W, Fujita H 2018 Meas. Sci. Technol. 30 17001Google Scholar

    [73]

    Tai K, Liu Y, Dillon S J 2014 Microsc. Microanal. 20 330Google Scholar

    [74]

    de Jonge N, Ross F M 2011 Nat. Nanotechnol. 6 695Google Scholar

    [75]

    胡奇 2018 硕士学位论文 (杭州: 浙江大学)

    Hu Q 2018 M. S. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [76]

    Chen X, Li C, Cao H 2015 Nanoscale 7 4811Google Scholar

    [77]

    Textor M, de Jonge N 2018 Nano Lett. 18 3313Google Scholar

    [78]

    Yang J, Alam S B, Yu L, Chan E, Zheng H 2019 Micron 116 22Google Scholar

    [79]

    Hutzler A, Schmutzler T, Jank M P M, Branscheid R, Unruh T, Spiecker E, Frey L 2018 Nano Lett. 18 7222Google Scholar

    [80]

    Liao H, Zheng H 2016 Annu. Rev. Phys. Chem. 67 719Google Scholar

    [81]

    Maxwell J C 1908 London, Edinburgh Dublin Philos. Mag. J. Sci. 16 818Google Scholar

    [82]

    Nielsen M H, Li D, Zhang H, Aloni S, Han T Y, Frandsen C, Seto J, Banfield J F, Cölfen H, De Yoreo J J 2014 Microsc. Microanal. 20 425Google Scholar

    [83]

    Vekilov P G 2010 Nanoscale 2 2346Google Scholar

    [84]

    付贵珍 2013 山东陶瓷 36 18Google Scholar

    Fu G 2013 Shandong Ceram. 36 18Google Scholar

    [85]

    Loh N D, Sen S, Bosman M, Tan S F, Zhong J, Nijhuis C A, Král P, Matsudaira P, Mirsaidov U 2017 Nat. Chem. 9 77Google Scholar

    [86]

    Voorhees P W 1985 J. Stat. Phys. 38 231Google Scholar

    [87]

    李东祥, 高媛媛, 张晓芳, 夏海兵 2019 化学学报 77 305Google Scholar

    Li D X, Gao Y Y, Zhang X F, Xia H B 2019 Acta Chem. Sin. (Chin. Ed.) 77 305Google Scholar

    [88]

    LaMer V K, Dinegar R H 1950 J. Am. Chem. Soc. 72 4847Google Scholar

    [89]

    Chen Y, Chen J, Wu W 2017 J. Phys. Chem. C 121 26069Google Scholar

    [90]

    Banfield J, Welch S, Zhang H, Ebert T, Penn R 2000 Science 289 751Google Scholar

    [91]

    Liao H, Zheng H 2013 J. Am. Chem. Soc. 135 5038Google Scholar

    [92]

    Jungjohann K L, Bliznakov S, Sutter P W, Stach E A, Sutter E A 2013 Nano Lett. 13 2964Google Scholar

    [93]

    Wu J, Gao W, Wen J, Miller D J, Lu P, Zuo J, Yang H 2015 Nano Lett. 15 2711Google Scholar

    [94]

    Chen F, Chen J, Lin Y, Kuo M, Hsu Y, Wu W 2019 Nanoscale 11 10486Google Scholar

    [95]

    Su T, Wang Z L, Wang Z 2019 Small 15 1900050Google Scholar

    [96]

    Vailonis K M, Gnanasekaran K, Powers X B, Gianneschi N C, Jenkins D M 2019 J. Am. Chem. Soc. 141 10177Google Scholar

    [97]

    Hauwiller M R, Zhang X, Liang W, Chiu C, Zhang Q, Zheng W, Ophus C, Chan E M, Czarnik C, Pan M, Ross F M, Wu W, Chu Y, Asta M, Voorhees P W, Alivisatos A P, Zheng H 2018 Nano Lett. 18 6427Google Scholar

    [98]

    Yang J, Zeng Z, Kang J, Betzler S, Czarnik C, Zhang X, Ophus C, Yu C, Bustillo K, Pan M, Qiu J, Wang L, Zheng H 2019 Nat. Mater. 18 970Google Scholar

    [99]

    Zheng W, Hauwiller M R, Liang W, Ophus C, Ercius P, Chan E M, Chu Y, Asta M, Du X, Alivisatos A P, Zheng H 2019 Nano Res. 12 2889Google Scholar

    [100]

    Parent L R, Robinson D B, Woehl T J, Ristenpart W D, Evans J E, Browning N D, Arslan I 2012 ACS Nano 6 3589Google Scholar

    [101]

    Verch A, Pfaff M, de Jonge N 2015 Langmuir 31 6956Google Scholar

    [102]

    陈新, 李唱, 柯凯 2017 科学通报 62 2886Google Scholar

    Chen X, Li C, Ke K 2017 Sci. Bull. 62 2886Google Scholar

  • [1] Yang Dong, Li Zhong-Wen, Tian Yuan, Sun Shuai-Shuai, Tian Huan-Fang, Yang Huai-Xin, Li Jian-Qi. Photo-emission electron gun and electron optical simulation for ultrafast scanning electron microscope. Acta Physica Sinica, 2024, 73(22): 222901. doi: 10.7498/aps.73.20241245
    [2] Zhong Xiao-Yan, Li Zhuo. Atomic scale characterization of three-dimensional structure, magnetic properties and dynamic evolutions of materials by transmission electron microscopy. Acta Physica Sinica, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [3] Lu Jing-Yu, Ke Cheng-Zhi, Gong Zheng-Liang, Li De-Ping, Ci Li-Jie, Zhang Li, Zhang Qiao-Bao. Application of in-situ characterization techniques in all-solid-state lithium batteries. Acta Physica Sinica, 2021, 70(19): 198102. doi: 10.7498/aps.70.20210531
    [4] Xiong Yu-Wei, Yin Kui-Bo, Wen Yi-Feng, Xin Lei, Yao Li-Bing, Zhu Chong-Yang, Sun Li-Tao. In situ observation of lithiation mechanism of SnO2 nanoparticles. Acta Physica Sinica, 2019, 68(15): 158201. doi: 10.7498/aps.68.20190431
    [5] Li Chao, Yao Yuan, Yang Yang, Shen Xi, Gao Bin, Huo Zong-Liang, Kang Jin-Feng, Liu Ming, Yu Ri-Cheng. In situ transmission electron microscopy studies on nanomaterials and HfO2-based storage nanodevices. Acta Physica Sinica, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [6] Yang Quan, Ma Li, Yang Bin, Ding Hui-Yang, Chen Tao, Yang Zhan, Sun Li-Ning, Toshio Fukuda. Method of picking up carbon nanotubes inside scanning electron microscope. Acta Physica Sinica, 2018, 67(13): 136801. doi: 10.7498/aps.67.20180347
    [7] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [8] Zhang Chao, Fang Liang, Sui Bing-Cai, Xu Qiang, Wang Hui. Nano-scale lithography and in-situ electrical measurements based on the micro-chips in a transmission electron microscope. Acta Physica Sinica, 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [9] WANG ZHEN-XIA, RUAN MEI-LING, YANG JIN-QING, WANG WEN-MIN, YU GUO-QING. INVESTIGATION OF THE NOVEL CARBON NANOSTRUCTURES BY HIGH RESOLUTION ELECTRON MICROSCOPY. Acta Physica Sinica, 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [10] Qui Wen-Xiu, Yao Xi. . Acta Physica Sinica, 1995, 44(4): 614-621. doi: 10.7498/aps.44.614
    [11] LI YI-JIE, XIONG GUANG-CHENG, GAN ZI-ZHAO, REN CONG-XIN, ZOU SHI-CHANG. TEM STUDY OF MICROSTRUCTURAL CHANGES INDUCED BY AR ION IMPLANTATION IN YBa2Cu3O7-x SUPERCONDUCTING FILMS. Acta Physica Sinica, 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [12] LI LONG, LI FANG-HUA, YANG DA-YU, TIAN LING-HUA, LIN ZHEN-JIN. ELECTRON DIFFRACTION AND HIGH RESOLUTION MICRO-SCOPY STUDY ON INCOMMENSURATE MODULATED STRUCTURE IN Ce1+εFe4B4 ALLOY. Acta Physica Sinica, 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [13] HEI ZU-KUN, GUO YONG-XIANG. A TEM STUDY OF CRYSTALLIZATION OF AMORPHOUS Ni-Zr ALLOY (Ⅱ)——TRANSITION AREA FORMED DURING CRYSTALLIZATION OF Ni-33at%Zr. Acta Physica Sinica, 1989, 38(12): 2034-2038. doi: 10.7498/aps.38.2034
    [14] XU HUI-FANG, LUO GU-FENG, HU MEI-SHENG, CHEN JUN. HRTEM STUDY OF THE SUPERLATTICE ORTHOCLASE. Acta Physica Sinica, 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [15] GUO YONG-XIANG, HEI ZU-KUN, WU YU-KUN, GUO KE-XIN. A TEM STUDY OF THE CRYSTALLIZATION OF AMORPHOUS Ni-Zr ALLOY(I)——METASTABLE PHASES FORMED DURING CRYSTALLIZATION OF Ni67Zr33. Acta Physica Sinica, 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [16] ZHANG JING, LIU AN-SHENG, WU ZI-QIN, GUO KE-XIN. A TEM STUDY OF Pd-Si THIN FILM SOLID-PHASE REACTION. Acta Physica Sinica, 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [17] KONG QING-PING, ANG XIANG, NI QUN-HUI. OBSERVATIONS ON HIGH TEMPERATURE CREEP PROCESSES OF A NICKEL BASE ALLOY BY TRANSMISSION ELECTRON MICROSCOPY. Acta Physica Sinica, 1985, 34(7): 973-977. doi: 10.7498/aps.34.973
    [18] LI FANG-HUA, FAN HAN-JIE, YANG DA-YU, FU PING-QIU, KONG YOU-HUA. ELECTRON MICROSCOPY OF HUANGHOITE. Acta Physica Sinica, 1982, 31(5): 571-576. doi: 10.7498/aps.31.571
    [19] CHENG PENG-ZHU, MA XIAO-HUA, LUO QI-GUANG, YANG DA-YU. THE PREPARATION OF TRANSMISSION ELECTRON MICROSCOPE SPECIMEN BY ELECTROLYTIC POLISHING METHOD. Acta Physica Sinica, 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [20] GUO KE-XIN, LIN BAO-JUN. A TEM STUDY OF PARTIAL DISLOCATIONS IN A NICKEL-CHROMIUM ALLOY. Acta Physica Sinica, 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
Metrics
  • Abstract views:  12968
  • PDF Downloads:  462
  • Cited By: 0
Publishing process
  • Received Date:  11 November 2020
  • Accepted Date:  09 December 2020
  • Available Online:  23 December 2020
  • Published Online:  20 April 2021

/

返回文章
返回