Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the model of space magnetic induction of a bi-pole magnet

Su Xu-Kun Leng Yong-Gang Zhang Yu-Yang Fan Sheng-Bo

Citation:

Study on the model of space magnetic induction of a bi-pole magnet

Su Xu-Kun, Leng Yong-Gang, Zhang Yu-Yang, Fan Sheng-Bo
PDF
HTML
Get Citation
  • This article proposed an equivalent model to calculate the magnetic field of a special multipole magnet. The special multipole magnet is formed when two permanent magnets of large dimension differences are forced into contact with the same polarity, after the removal of the small magnet, the large magnet becomes the multipole magnet. In the process, the interacting force between the two magnets changes from repulsive force to attractive force as the two magnets approach. Moreover, the reversed pole of the multipole magnet occupies an area roughly the same as the contact area of the two magnets. Qualitatively, the large magnet possesses a lower load line than the small magnet, which suggests that the large magnet is prone to irreversible demagnetization, whereas the small magnet tends to remain unperturbed. Quantitatively, taking axially magnetized cylindrical magnets as examples, the equations for the magnetic fields were derived based on the magnetizing current theory under the assumption that the magnetization of the multipole magnet is locally homogeneous. To validate our equivalent model, two special multipole magnets (model A and model B) have been studied both theoretically and experimentally. Model A was obtained by a large magnet ($\Phi40\times2.5$) demagnetized at the center by a small magnet ($\Phi12\times18$), model B was obtained by demagnetizing model A with 4 extra small magnets ($\Phi6\times20$) at specific symmetrical positions around the center. Measurements for the magnetic induction intensity of the special multipole magnets are in good agreement with the theoretical calculations. The results suggested that the special multipole magnets of model A and B are equivalent to ring magnets and porous magnets, where the near field magnetic induction of the multipole magnets can be adjusted by the small magnets. In addition, a parameter analysis was carried out to study the influence of small magnets on the special multipole magnets. The results indicated that the reversed pole behavior of the special multipole magnet works mainly at positions near the magnet, and decreases rapidly as the observation point moves away from the reversed area. Our model may provide a theoretical basis and alternative solutions for electromechanical systems using multipole magnets.
      Corresponding author: Leng Yong-Gang, leng_yg@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFD0700704) and the National Natural Science Foundation of China (Grant No. 51675370)
    [1]

    Coey J M D 2002 J. Magn. Magn. Mater. 248 3

    [2]

    Lu Z, Wang Z X, Zhou Y, Lu X L 2018 J. Sound Vib. 423 18Google Scholar

    [3]

    Fu H L, Theodossiades S, Gunn B, Abdallah I, Chatzi, E 2020 Nonlinear Dyn. 101 4

    [4]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601Google Scholar

    [5]

    Lai S K, Wang C, Zhang L H 2019 Mech. Syst. Signal Process 122 87Google Scholar

    [6]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [7]

    Schomburg W K, Reinertz O, Sackmann J, Schmitz K 2020 J. Magn. Magn. Mater. 506 166694Google Scholar

    [8]

    Peng Q L 2007 J. Magn. Magn. Mater. 309 1Google Scholar

    [9]

    Zhang Y Y, Leng Y G, Tan D, Liu J J 2018 J. Magn. 23 4

    [10]

    Caciagli A, Baars R J, Philipse A P, Kuipers B W 2018 J. Magn. Magn. Mater. 456 423Google Scholar

    [11]

    Zhang Y Y, Leng Y G, Liu J J, Tan D 2019 J. Magn. 24 3

    [12]

    Zhang Y Y, Leng Y G 2020 Int. J. Appl. Electromagn. Mech. 62 2

    [13]

    Ruoho S, Arkkio A 2008 IEEE Trans. Magn. 44 7

    [14]

    Campbell P 1996 Permanent Magnet Materials and Their Application (Cambridge, U.K.: Cambridge University Press) pp64–65

    [15]

    孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波 2020 物理学报 69 140502Google Scholar

    Sun S L, Leng Y G, Zhang Y Y, Su X K, Fan S B 2020 Acta Phys. Sin. 69 140502Google Scholar

    [16]

    Shin H S, Jang G H, Choi J Y 2020 AIP Adv. 10 1

    [17]

    Ponce E A, Leeb S B 2020 IEEE Trans. Magn. 56 3Google Scholar

    [18]

    O’Connell J L, Robertson W S, Cazzolato B S 2020 J. Magn. Magn. Mater. 510 166894Google Scholar

    [19]

    De Visschere P 2005 J. Phys. D: Appl. Phys. 38 3

    [20]

    Nguyen V T, Lu T F 2019 J. Magn. Magn. Mater. 491 165569Google Scholar

    [21]

    Landau L D, Lifschitz E M 1975 The Classical Theory of Fields (Vol. 2) (Oxford: Pergamon Press) pp89−108

    [22]

    Landau L D, Lifschitz E M 1984 Electrodynamics of Continuous Media (Vol. 8) (Oxford: Pergamon Press) pp105−113

  • 图 1  圆柱形磁铁表面多处接触反磁化示意图

    Figure 1.  Schematic diagram of a cylindrical magnet with multiple local demagnetization on the surface.

    图 2  (a), (b) 磁显片下$ \varPhi \;40\times2.5 $$ \varPhi \;12\times18 $的正常磁铁; (c) 中心接触反磁化结果: 小磁铁被吸附在大磁铁中心; (d) 磁感应强度测量实验装置

    Figure 2.  (a), (b) Normal magnets of size $ \varPhi \;40\times2.5 $ and $ \varPhi \;12\times18 $ under magnetic field viewing film; (c) the small magnet is observed to be attracted to the center of the large magnet after the local demagnetization process at the center of the large magnet; (d) experiment setup for the measurement of magnetic induction intensity.

    图 3  正常磁铁轴向磁感应强度$ B_z(z) $. 红色圆点为实验测量结果, 蓝色直线为磁化电流模型计算结果 (a) 大磁铁$ \varPhi \;40\times2.5 $; (b) 小磁铁$ \varPhi \;12\times18 $

    Figure 3.  The axial magnetic induction intensity $ B_z(z) $ of a normal magnet. Red dot denotes the experimental data whereas the blue line denotes the theoretical results: (a) Larger magnet $ \varPhi \;40\times2.5 $; (b) smaller magnet $ \varPhi \;12\times18 $.

    图 4  模型A: 仅中心接触反磁化的圆柱磁铁 (a) 反常磁铁示意图; (b) 磁显片下的反常磁铁

    Figure 4.  Model A: Cylindrical magnet with local demagnetization at the center: (a) Diagram of the abnormal magnet; (b) the abnormal magnet under magnetic field viewing film.

    图 5  (a) 模型A反常磁铁轴向磁感应强度$ B_z(z) $. 红色圆点为实验测量结果, 蓝色直线为磁化电流模型计算结果. (b) 正常圆柱形磁铁, 反常磁铁和正常环形磁铁轴向磁感应强度, 其中三种磁铁外形尺寸均一致

    Figure 5.  (a) The axial magnetic induction intensity $ B_z(z) $ for the abnormal magnet. Red dot denotes the experimental data whereas the blue line denotes the theoretical results. (b) The axial magnetic induction intensity $ B_z(z) $ of a normal cylindrical magnet, an abnormal magnet and a normal ring magnet, of which the dimensions of the three are the same.

    图 6  模型B: 中心及轨道反磁化的圆柱形磁铁 (a) 反常磁铁示意图. 为便于阅读, 图中四个小圆的半径放大了一倍. (b) 磁显片下的反常磁铁

    Figure 6.  Model B: Cylindrical magnet with local demagnetization at both the center and the orbit: (a) Diagram of the abnormal magnet. For the convenience of reading, the radii of the four small circles in the figure are doubled. (b) The abnormal magnet under magnetic field viewing film.

    图 7  (a) 模型A, B反常磁铁轴向磁感应强度的实验数据; (b) 模型B反常磁铁轴向磁感应强度. 蓝色圆点为实验测量结果, 红色直线为磁化电流模型计算结果

    Figure 7.  (a) Experimental data of axial magnetic induction for abnormal magnets of type A and B; (b) the axial magnetic induction intensity of the abnormal magnet of type B. Blue circle denotes the experimental data whereas the red line denotes the theoretical results.

    图 8  (a) 在$ z = 3 \;{\rm{mm}} $平面上, 模型B反常磁铁的水平磁感应强度$ B_x(x) $, 红色圆点为实验测量结果, 蓝色直线为磁化电流模型计算结果; (b) 在$ z = 3 \;{\rm{mm}} $平面上, 模型A, B反常磁铁及正常磁铁的水平磁感应强度$ B_x(x) $的对比

    Figure 8.  (a) The horizontal magnetic induction intensity $ B_x(x) $ of the abnormal magnet of type B at $ z = 3 \;{\rm{mm}} $. Red circle denotes the experimental data whereas the blue line denotes the theoretical results. (b) Comparison of horizontal magnetic induction intensity $ B_x(x) $ of the abnormal magnets of type A and B and a normal magnet with the same size at $ z = 3 \;{\rm{mm}} $.

    图 9  不同厚度小磁铁 (a)$ \Phi15\times10 $, $ \Phi15\times15 $$ \Phi15\times20 $以及(b)$ \Phi10\times10 $, $ \Phi10\times15 $$ \Phi10\times20 $接触反磁化大磁铁$ \Phi40\times2.5 $ 后得到的反常磁铁, 其沿$ z $轴的轴向磁感应强度$ B_z(z) $

    Figure 9.  The axial magnetic induction $ B_z(z) $ of larger magnet $ \Phi40\times2.5 $ demagnetized by smaller magnets of different heights with (a)$ \Phi15\times10 $, $ \Phi15\times15 $, $ \Phi15\times20 $ and (b)$ \Phi10\times10 $, $ \Phi10\times15 $, $ \Phi10\times20 $.

    图 10  由小磁铁$\Phi15\times20$$\Phi15\times10$接触反磁化形成的反常磁铁C, D, 在远离磁铁表面$ z = 5 \;{\rm{mm}} $处二者磁感应强度的差值: (a)反常磁铁C与D的切向磁感应强度差值$ B_{\rm t} $; (b) 反常磁铁C与D的法向磁感应强度差值$ B_{\rm n} $; (c) 反常磁铁C与D的磁感应强度的绝对值的差值$ B_{\rm{abs}} $

    Figure 10.  Abnormal magnets C, D are locally demagnetized by smaller magnets of size $\Phi 15\times20$ and $\Phi 15\times10$ at the center, the difference of magnetic induction between C and D at the plane $ 5 \;{\rm{mm}} $ away from the abnormal magnets' surface: (a) The tangential difference $ B_{t} $; (b) the axial difference $ B_{\rm n} $; (c) the difference of absolute value $ B_{\rm{abs}} $.

    表 1  A, B两组模型材料参数

    Table 1.  Material parameters of the two models

    组别 A B
    大磁铁尺寸/mm $\varPhi \;40\times2.5$ $\varPhi \;40\times2.5$
    小磁铁a尺寸/mm $\varPhi \;12\times18$ $\varPhi \;12\times18$
    小磁铁b尺寸/mm Null $\varPhi \; 6\times20$
    DownLoad: CSV

    表 2  小磁铁尺寸、磁化强度及相应反常磁铁指标

    Table 2.  The size and magnetization of small magnet and the indicators of corresponding abnormal magnet

    小磁铁尺寸/mm 小磁铁磁化强度/(A·m-1) 反常磁铁转变点位置/mm 反常磁铁的$B_{{\rm s}z}$/mT
    $\Phi15\times10$ $6.565\times10^5$ $7.5$ 9.9
    $\Phi 15\times15$ $6.614\times10^5$ $8.0$ 8.9
    $\Phi 15\times20$ $6.712\times10^5$ $8.2$ 3.4
    $\Phi 10\times10$ $6.103\times10^5$ $7.1$ –13.9
    $\Phi 10\times15$ $6.207\times10^5$ $8.0$ –18.8
    $\Phi 10\times20$ $6.365\times10^5$ $8.3$ –24.3
    DownLoad: CSV
  • [1]

    Coey J M D 2002 J. Magn. Magn. Mater. 248 3

    [2]

    Lu Z, Wang Z X, Zhou Y, Lu X L 2018 J. Sound Vib. 423 18Google Scholar

    [3]

    Fu H L, Theodossiades S, Gunn B, Abdallah I, Chatzi, E 2020 Nonlinear Dyn. 101 4

    [4]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601Google Scholar

    [5]

    Lai S K, Wang C, Zhang L H 2019 Mech. Syst. Signal Process 122 87Google Scholar

    [6]

    Leng Y G, Tan D, Liu J J, Zhang Y Y, Fan S B 2017 J. Sound Vib. 406 146Google Scholar

    [7]

    Schomburg W K, Reinertz O, Sackmann J, Schmitz K 2020 J. Magn. Magn. Mater. 506 166694Google Scholar

    [8]

    Peng Q L 2007 J. Magn. Magn. Mater. 309 1Google Scholar

    [9]

    Zhang Y Y, Leng Y G, Tan D, Liu J J 2018 J. Magn. 23 4

    [10]

    Caciagli A, Baars R J, Philipse A P, Kuipers B W 2018 J. Magn. Magn. Mater. 456 423Google Scholar

    [11]

    Zhang Y Y, Leng Y G, Liu J J, Tan D 2019 J. Magn. 24 3

    [12]

    Zhang Y Y, Leng Y G 2020 Int. J. Appl. Electromagn. Mech. 62 2

    [13]

    Ruoho S, Arkkio A 2008 IEEE Trans. Magn. 44 7

    [14]

    Campbell P 1996 Permanent Magnet Materials and Their Application (Cambridge, U.K.: Cambridge University Press) pp64–65

    [15]

    孙帅令, 冷永刚, 张雨阳, 苏徐昆, 范胜波 2020 物理学报 69 140502Google Scholar

    Sun S L, Leng Y G, Zhang Y Y, Su X K, Fan S B 2020 Acta Phys. Sin. 69 140502Google Scholar

    [16]

    Shin H S, Jang G H, Choi J Y 2020 AIP Adv. 10 1

    [17]

    Ponce E A, Leeb S B 2020 IEEE Trans. Magn. 56 3Google Scholar

    [18]

    O’Connell J L, Robertson W S, Cazzolato B S 2020 J. Magn. Magn. Mater. 510 166894Google Scholar

    [19]

    De Visschere P 2005 J. Phys. D: Appl. Phys. 38 3

    [20]

    Nguyen V T, Lu T F 2019 J. Magn. Magn. Mater. 491 165569Google Scholar

    [21]

    Landau L D, Lifschitz E M 1975 The Classical Theory of Fields (Vol. 2) (Oxford: Pergamon Press) pp89−108

    [22]

    Landau L D, Lifschitz E M 1984 Electrodynamics of Continuous Media (Vol. 8) (Oxford: Pergamon Press) pp105−113

  • [1] Deng Chen-Hua, Yu Zhong-Hai, Wang Yu-Tao, Kong Sen, Zhou Chao, Yang Sen. Crystallization kinetics of Ti-doped Nd2Fe14B/α-Fe nanocomposite permanent magnets. Acta Physica Sinica, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] Cui Yong, Wu Ming, Song Xiao, Huang Yu-Ping, Jia Qi, Tao Yun-Fei, Wang Chen. Research progress of small low-frequency transmitting antenna. Acta Physica Sinica, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [3] Li Zi-Liang, Shi Zhen-Lian, Wang Peng-Jun. Design and research of two-dimensional magneto-optical trap of sodium atom using permanent magnets. Acta Physica Sinica, 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [4] Shi Wei, Zhou Qiang, Liu Bin. Performance analysis of spinning magnet as mechanical antenna. Acta Physica Sinica, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [5] Li Zhu-Bai, Li Yun, Qin Yuan, Zhang Xue-Feng, Shen Bao-Gen. Magnetization reversal and coercivity in rare-earth permanent magnets and composite magnets. Acta Physica Sinica, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [6] Deng Dong-Ge, Zuo Su, Wu Xin-Jun. A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet. Acta Physica Sinica, 2018, 67(17): 178103. doi: 10.7498/aps.67.20180560
    [7] Gao Peng-Fei, Liu Tie, Chai Shao-Wei, Dong Meng, Wang Qiang. Influence of magnetic flux density and cooling rate on orientation behavior of Tb0.27Dy0.73Fe1.95 alloy during solidification process. Acta Physica Sinica, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [8] Deng Dong-Ge, Wu Xin-Jun, Zuo Su. Measurement of initial magnetization curve based on constant magnetic field excited by permanent magnet. Acta Physica Sinica, 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [9] Ma Jun, Yang Wan-Min, Wang Miao, Chen Sen-Lin, Feng Zhong-Ling. The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [10] He Yong-Zhou. Inhomogeneity of external magnetic field for permanent magnet. Acta Physica Sinica, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [11] Ma Jun, Yang Wan-Min, Li Jia-Wei, Wang Miao, Chen Sen-Lin. The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [12] Ma Jun, Yang Wan-Min. Effect of assembled bar magnet configuration on levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [13] Ma Jun, Yang Wan-Min, Li Guo-Zheng, Cheng Xiao-Fang, Guo Xiao-Dan. Effects of additional permanent magnet on the levitation force of single domain GdBCO bulk superconductor. Acta Physica Sinica, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [14] Liu Gui-Xiong, Xu Chen, Zhang Pei-Qiang, Wu Ting-Wan. Magnetomechanical modeling of magnet immersed in magnetic fluid and controllability of self-suspension. Acta Physica Sinica, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [15] Zhang Ran, Liu Ying, Gao Sheng-Ji, Xie Zhi, Tu Ming-Jing. Role of Dy addition in rapid-quenched NdFeB permanent magnets. Acta Physica Sinica, 2008, 57(1): 526-530. doi: 10.7498/aps.57.526
    [16] Zhang Ran, Liu Ying, Li Jun, Ma Yi-Long, Gao Sheng-Ji, Tu Ming-Jing. Study on the role of Nb addition in rapid-quenched NdFeB permanent magnets. Acta Physica Sinica, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [17] CHENG WEN-HAO, LI WEI, LI CHUAN-JIAN. . Acta Physica Sinica, 2001, 50(1): 139-143. doi: 10.7498/aps.50.139
    [18] LU YUN-JIN, YANG XING-SHUI, ZHAO JI-WAN, WANG GUI-QIN, ZHANG SHI-YUAN, LIU CHANG-QING. A STUDY OF THE INFLUENCE OF ADDITIVE AGENTS (2Fe)· Sn ON X-RAY DIFFRACTION RELATIVE INTENSITY I200/I111 OF PERMANENT MAGNET SmCo5. Acta Physica Sinica, 1982, 31(4): 467-473. doi: 10.7498/aps.31.467
    [19] SHENG JIAN. AN APPROXIMATE GRAPHIC METHOD TO CONSTRUCT THE DEMAGNETIZATION CURVE FOR PERMANENT MAGNETIC MATERIALS. Acta Physica Sinica, 1978, 27(3): 331-338. doi: 10.7498/aps.27.331
    [20] NEW MATERIALS LABORATORY. ON THE HYSTERESIS LOOPS OF LIQUID-PHASE-SINTERED SmCo5, PERMANENT MAGNET AT VARIOUS TEMPERATURES. Acta Physica Sinica, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
Metrics
  • Abstract views:  6152
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2021
  • Accepted Date:  06 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回