-
Potassium channels play an important role in repolarizing the nerve cell action potentials. There are many types of potassium channel proteins, and potassium channels allow potassium ions to specifically pass through the cell membrane, thereby maintaining the resting potential of nerve cells. In this paper, molecular dynamics simulation method is used to simulate the effects of 53.7 THz terahertz wave with different amplitudes on the secondary structure of KcsA potassium channel protein and the potassium ions rate. It is found in this study that under the action of the 53.7 THz terahertz wave, the number of alpha helices in KcsA potassium channel protein decreases, and the number of beta sheets and the number of coils increase. In addition, the 53.7 THz terahertz wave can accelerate potassium ions through the KcsA potassium channel. In this article, the effects of terahertz waves on potassium channel proteins are analyzed through the secondary structure of proteins, and a new perspective for the interaction between terahertz waves and biological functional molecules is presented as well.
-
Keywords:
- potassium channel /
- protein secondary structure /
- potassium ion rate /
- resonance absorption
[1] Nelson M T, Quayle J M 1995 Am. J. Physiol. 268 C799Google Scholar
[2] Faraci F M, Sobey C G 1996 Clin. Exp. Pharmacol. Physiol. 23 1091Google Scholar
[3] Orias M 1998 Medicina 58 429
[4] Johnston J, Forsythe I D, Kopp-Scheinpflug C 2010 J. Physiol. 588 3187Google Scholar
[5] Yellen G 2002 Nature 419 35Google Scholar
[6] Guan D, Lee J C F, Higgs M H, Spain W J, Foehring R C 2007 J. Neurophys. 97 1931Google Scholar
[7] Guan D, Armstrong W E, Foehring R C 2013 J. Physiol. 591 4807Google Scholar
[8] Zhu Z, Cheng C, Chang C, Ren G, Zhang J, Peng Y, Han J, Zhao H 2019 Analyst 144 2504Google Scholar
[9] 周俊, 刘盛纲 2014 现代应用物理 5 85Google Scholar
Zhou J, Liu S G 2014 Modern Applied Physics 5 85Google Scholar
[10] Michele J C, Piero U 2021 Chem. Phys. 155 075102Google Scholar
[11] Sizov F 2017 SPQEO 20 273Google Scholar
[12] Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40Google Scholar
[13] Wilmink G J, Grundt J E 2011 J. Infrared Millimeter Terahertz Waves 32 1074Google Scholar
[14] Bo W F, Guo L H, Yang Y, Ma J L, Wang K C, Tang J C, Wu Z, Zeng B Q, Gong Y B 2020 IEEE Access 8 10305Google Scholar
[15] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 JACS 143 4311Google Scholar
[16] Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C, Wen Q, Song B, Shu Y S 2021 PNAS 118 e2015685118Google Scholar
[17] Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 2730Google Scholar
[18] Zhu Z, Chen C, Chang C, Song B 2021 ACS Photonics 8 781Google Scholar
[19] Zhang X X, He M X, Chen Y, Li C, Zhao J W, Wang P F, Peng X 2019 Chin. Phys. B 28 128702Google Scholar
[20] Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar
[21] Yamazaki S, Harata M, Ueno Y, Tsubouchi M, Konagaya K, Ogawa Y, Isoyama G, Otani C, Hoshina H 2020 Sci. Rep. 10 9008Google Scholar
[22] Yamazaki S, Harata M, Idehara T, Konagaya K, Yokoyama G, Hoshina H, Ogawa Y 2018 Sci. Rep. 8 9990Google Scholar
[23] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar
[24] Takehiro T, Reiko S, Shiho T, Ken-Ichiro K, Hideki H 2020 Opt. Lett. 45 6078Google Scholar
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar
[26] Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S P 2001 BBA-Biomemberanes 1510 1Google Scholar
[27] Berendsen H J C, Spoel D V D, Drunen R V 1995 Comput. Phys. Commun. 91 43Google Scholar
[28] Parker M J, Sessions R B, Badcoe I G, Clarke A R 1996 Fold Des. 1 145Google Scholar
[29] Zhou H X, Wlodek S T, McCammon J A 1998 PNAS 95 9280Google Scholar
[30] Barron L D, Hecht L, Wilson G 1997 Biochemistry 36 13143Google Scholar
[31] Fischer S, Smith J C, Verma C S 2001 J. Phys. Chem. B 105 8050Google Scholar
[32] Leach A R 2001 Molecular Modelling: Principles and Applications (2nd Ed.) (Harlow: Pearson Education Ltd.) pp20−30
[33] Rath A, Johnson R M, Deber C M 2007 Pept. Sci. 88 217Google Scholar
[34] Moore D T, Berger B W, DeGrado W F 2008 Structure 16 991Google Scholar
[35] Matthews E E, Zoonens M, Engelman D M 2006 Cell 127 447Google Scholar
-
-
[1] Nelson M T, Quayle J M 1995 Am. J. Physiol. 268 C799Google Scholar
[2] Faraci F M, Sobey C G 1996 Clin. Exp. Pharmacol. Physiol. 23 1091Google Scholar
[3] Orias M 1998 Medicina 58 429
[4] Johnston J, Forsythe I D, Kopp-Scheinpflug C 2010 J. Physiol. 588 3187Google Scholar
[5] Yellen G 2002 Nature 419 35Google Scholar
[6] Guan D, Lee J C F, Higgs M H, Spain W J, Foehring R C 2007 J. Neurophys. 97 1931Google Scholar
[7] Guan D, Armstrong W E, Foehring R C 2013 J. Physiol. 591 4807Google Scholar
[8] Zhu Z, Cheng C, Chang C, Ren G, Zhang J, Peng Y, Han J, Zhao H 2019 Analyst 144 2504Google Scholar
[9] 周俊, 刘盛纲 2014 现代应用物理 5 85Google Scholar
Zhou J, Liu S G 2014 Modern Applied Physics 5 85Google Scholar
[10] Michele J C, Piero U 2021 Chem. Phys. 155 075102Google Scholar
[11] Sizov F 2017 SPQEO 20 273Google Scholar
[12] Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40Google Scholar
[13] Wilmink G J, Grundt J E 2011 J. Infrared Millimeter Terahertz Waves 32 1074Google Scholar
[14] Bo W F, Guo L H, Yang Y, Ma J L, Wang K C, Tang J C, Wu Z, Zeng B Q, Gong Y B 2020 IEEE Access 8 10305Google Scholar
[15] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 JACS 143 4311Google Scholar
[16] Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C, Wen Q, Song B, Shu Y S 2021 PNAS 118 e2015685118Google Scholar
[17] Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 2730Google Scholar
[18] Zhu Z, Chen C, Chang C, Song B 2021 ACS Photonics 8 781Google Scholar
[19] Zhang X X, He M X, Chen Y, Li C, Zhao J W, Wang P F, Peng X 2019 Chin. Phys. B 28 128702Google Scholar
[20] Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar
[21] Yamazaki S, Harata M, Ueno Y, Tsubouchi M, Konagaya K, Ogawa Y, Isoyama G, Otani C, Hoshina H 2020 Sci. Rep. 10 9008Google Scholar
[22] Yamazaki S, Harata M, Idehara T, Konagaya K, Yokoyama G, Hoshina H, Ogawa Y 2018 Sci. Rep. 8 9990Google Scholar
[23] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar
[24] Takehiro T, Reiko S, Shiho T, Ken-Ichiro K, Hideki H 2020 Opt. Lett. 45 6078Google Scholar
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar
[26] Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S P 2001 BBA-Biomemberanes 1510 1Google Scholar
[27] Berendsen H J C, Spoel D V D, Drunen R V 1995 Comput. Phys. Commun. 91 43Google Scholar
[28] Parker M J, Sessions R B, Badcoe I G, Clarke A R 1996 Fold Des. 1 145Google Scholar
[29] Zhou H X, Wlodek S T, McCammon J A 1998 PNAS 95 9280Google Scholar
[30] Barron L D, Hecht L, Wilson G 1997 Biochemistry 36 13143Google Scholar
[31] Fischer S, Smith J C, Verma C S 2001 J. Phys. Chem. B 105 8050Google Scholar
[32] Leach A R 2001 Molecular Modelling: Principles and Applications (2nd Ed.) (Harlow: Pearson Education Ltd.) pp20−30
[33] Rath A, Johnson R M, Deber C M 2007 Pept. Sci. 88 217Google Scholar
[34] Moore D T, Berger B W, DeGrado W F 2008 Structure 16 991Google Scholar
[35] Matthews E E, Zoonens M, Engelman D M 2006 Cell 127 447Google Scholar
Catalog
Metrics
- Abstract views: 7624
- PDF Downloads: 168
- Cited By: 0