-
We report on a 1550-nm vertical-cavity surface-emitting laser (VCSEL) with single mode power of 0.97 mW. The quaternary AlGaInAs quantum well is designed to improve the gain level in an active region. The mesa structure with tunneling capability is designed and fabricated to achieve the efficient carrier injection and the transverse mode guiding. The distributed Bragg reflector (DBR) mirror of 1550 nm VCSEL consists of the semiconductor DBR and outer dielectric DBR. The central wavelength of VCSEL is 1547.6 nm. The maximum output power of 2.6 mW is achieved at 15 ℃, and the maximum single-mode output power is 0.97 mW. The side mode suppression ratio (SMSR) can reach more than 35 dB. The maximum output power decreases with operation temperature increasing. However, the maximum output power of more than 1.3 mW is also gained at 35 ℃. The shift coefficient of the central wavelength varying with the operation current is 0.13 nm/mA. And the wavelength shows a stable shift with the operation current in the single-mode working region, which indicates the application possibility in the field of gas detection.
-
Keywords:
- vertical-cavity surface-emitting laser /
- long wavelength /
- single-mode operation /
- optical communication /
- sensing and detection
[1] Kamau P, Ming M, Timothy B G, Christian N, Enno R, Markus O, Monroy I T 2011 J. Opt. Commun. Netw 3 399Google Scholar
[2] Boucher J F, Callahan J J 2011 Proceedings of Defense, Security, and Sensing SPIE Orlando, United States, April 25–29, 2011 p80390B1
[3] Nicolas D, Sébastien C 2002 Prog. Energ. Combust. 28 107Google Scholar
[4] Hofmann W, Muller M, Nadtochiy A, Meltzer C, Mutig A, Bohm G, Rosskopf J, Bimberg D, Amann M C, Chang-Hasnain C 2009 Opt. Express 17 17547Google Scholar
[5] Dalila E, Michael Y, Hung K C, Sam S K, Neelanjan B, Sam C, Ghulam H, Mike H, Chris C 2020 Proceedings of SPIE OPTO San Francisco, California, United States, February 1–6, 2020 p113000R
[6] Ralph J, Virgil B, Jim T, Bo-Su C, David M, James O, Tzu-Yu W, Jin K, Ho-Ki K, Jae-Hyun R, Gyoungwon P, Edie K, Helen C, Mike R, Terry M, Joe G 2003 Proceedings of Integrated Optoelectronics Devices SPIE San Jose, CA, United States, January 25–31, 2003 p4994
[7] Michael M, Werner H, Tobias G, Markus H, Philip W, Robin D N, Enno R, Gerhard B, Dieter B, Markus-Christian A 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar
[8] Syrbu A, Mircea A, Mereuta A, Caliman A, Berseth C A, Suruceanu G, Iakovlev V, Achtenhagen M, Rudra A, Kapon E 2004 IEEE Photon. Technol. Lett. 16 1230Google Scholar
[9] Gerhard B, Markus O, Robert S, Juergen R, Christian L, Markus M, Fabian K, Felix M, Ralf M, Markus-Christian A 2003 J. Cryst. Growth. 251 748Google Scholar
[10] Müller M, Hofmann W, Böhm G, Amann M C 2009 IEEE Photon. Technol. Lett. 21 1615Google Scholar
[11] Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E 2011 Opt. Express 19 16996Google Scholar
[12] Yi R, Yang W J, Christopher C, Michael C Y H, Philip W, Salman K, Mohammad R C, Morteza Z, Alan E W, Connie J C H 2013 IEEE J. Sel. Top. Quant. 19 1701311Google Scholar
[13] Priyanka G, Mohit S, Ananya J, Monika K, Somendra P S, Nikita S, Gurjit K 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, March 3–5, 2016 p4220
[14] Zhao D, Yang H, Chuwongin S, Seo J H, Ma Z, Zhou W 2012 IEEE Photonics. J. 4 2169Google Scholar
[15] LIU L J, WU Y D, WANG Y, WANG L L, An J M, ZHAO Y W 2020 J. Infrared Millim. Waves 39(4) 397Google Scholar
[16] Dalila E, Valdimir I, Alexei S, Grigore S, Zlatco M, Andrei C, Alexandru M, Elyahou K 2014 Opt. Express 22 32180Google Scholar
[17] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军 2020 物理学报 69 054204Google Scholar
Zhang J Y, Zhang J W, Zeng Y G, Zhang J, Ning Y Q, Zhang X, Qin L, Liu Y, Wang L J 2020 Acta Phys. Sin. 69 054204Google Scholar
[18] Weng W C, Kent D C, Mary H C, Kevin L L, Hadley G R 1997 IEEE J. Sel. Top. Quant. 33 1810Google Scholar
[19] Hadley G R 1995 Opt. Lett. 20 1483Google Scholar
[20] Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express 23 14763Google Scholar
[21] Unold H J, Mahmoud S W Z, Jager R, Kicherer M, Riedl M C, Ebeling K J 2000 IEEE Photon. Technol. Lett. 12 939Google Scholar
[22] Nikolay N L, James A L, Jorg R K, Vitaly A S, Dieter B, Philip M, Gerrit F, Alexey S P, Denis M, Gerard K, Adrian A, Leonid Y K, Sergey A B, Innokenty I N, Nikolay A M, Christoph C, Ronald F 2012 Proceedings of SPIE OPTO San Francisco, California, United States, January 21–26, 2012 p82760K
-
-
[1] Kamau P, Ming M, Timothy B G, Christian N, Enno R, Markus O, Monroy I T 2011 J. Opt. Commun. Netw 3 399Google Scholar
[2] Boucher J F, Callahan J J 2011 Proceedings of Defense, Security, and Sensing SPIE Orlando, United States, April 25–29, 2011 p80390B1
[3] Nicolas D, Sébastien C 2002 Prog. Energ. Combust. 28 107Google Scholar
[4] Hofmann W, Muller M, Nadtochiy A, Meltzer C, Mutig A, Bohm G, Rosskopf J, Bimberg D, Amann M C, Chang-Hasnain C 2009 Opt. Express 17 17547Google Scholar
[5] Dalila E, Michael Y, Hung K C, Sam S K, Neelanjan B, Sam C, Ghulam H, Mike H, Chris C 2020 Proceedings of SPIE OPTO San Francisco, California, United States, February 1–6, 2020 p113000R
[6] Ralph J, Virgil B, Jim T, Bo-Su C, David M, James O, Tzu-Yu W, Jin K, Ho-Ki K, Jae-Hyun R, Gyoungwon P, Edie K, Helen C, Mike R, Terry M, Joe G 2003 Proceedings of Integrated Optoelectronics Devices SPIE San Jose, CA, United States, January 25–31, 2003 p4994
[7] Michael M, Werner H, Tobias G, Markus H, Philip W, Robin D N, Enno R, Gerhard B, Dieter B, Markus-Christian A 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar
[8] Syrbu A, Mircea A, Mereuta A, Caliman A, Berseth C A, Suruceanu G, Iakovlev V, Achtenhagen M, Rudra A, Kapon E 2004 IEEE Photon. Technol. Lett. 16 1230Google Scholar
[9] Gerhard B, Markus O, Robert S, Juergen R, Christian L, Markus M, Fabian K, Felix M, Ralf M, Markus-Christian A 2003 J. Cryst. Growth. 251 748Google Scholar
[10] Müller M, Hofmann W, Böhm G, Amann M C 2009 IEEE Photon. Technol. Lett. 21 1615Google Scholar
[11] Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E 2011 Opt. Express 19 16996Google Scholar
[12] Yi R, Yang W J, Christopher C, Michael C Y H, Philip W, Salman K, Mohammad R C, Morteza Z, Alan E W, Connie J C H 2013 IEEE J. Sel. Top. Quant. 19 1701311Google Scholar
[13] Priyanka G, Mohit S, Ananya J, Monika K, Somendra P S, Nikita S, Gurjit K 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, March 3–5, 2016 p4220
[14] Zhao D, Yang H, Chuwongin S, Seo J H, Ma Z, Zhou W 2012 IEEE Photonics. J. 4 2169Google Scholar
[15] LIU L J, WU Y D, WANG Y, WANG L L, An J M, ZHAO Y W 2020 J. Infrared Millim. Waves 39(4) 397Google Scholar
[16] Dalila E, Valdimir I, Alexei S, Grigore S, Zlatco M, Andrei C, Alexandru M, Elyahou K 2014 Opt. Express 22 32180Google Scholar
[17] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军 2020 物理学报 69 054204Google Scholar
Zhang J Y, Zhang J W, Zeng Y G, Zhang J, Ning Y Q, Zhang X, Qin L, Liu Y, Wang L J 2020 Acta Phys. Sin. 69 054204Google Scholar
[18] Weng W C, Kent D C, Mary H C, Kevin L L, Hadley G R 1997 IEEE J. Sel. Top. Quant. 33 1810Google Scholar
[19] Hadley G R 1995 Opt. Lett. 20 1483Google Scholar
[20] Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express 23 14763Google Scholar
[21] Unold H J, Mahmoud S W Z, Jager R, Kicherer M, Riedl M C, Ebeling K J 2000 IEEE Photon. Technol. Lett. 12 939Google Scholar
[22] Nikolay N L, James A L, Jorg R K, Vitaly A S, Dieter B, Philip M, Gerrit F, Alexey S P, Denis M, Gerard K, Adrian A, Leonid Y K, Sergey A B, Innokenty I N, Nikolay A M, Christoph C, Ronald F 2012 Proceedings of SPIE OPTO San Francisco, California, United States, January 21–26, 2012 p82760K
Catalog
Metrics
- Abstract views: 10833
- PDF Downloads: 333
- Cited By: 0