Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isosteric heat and selectivity in adsorption of gases in rough pores: In Henry’s law region

Kang Yan-Shuang Wang Hai-Jun Sun Zong-Li

Citation:

Isosteric heat and selectivity in adsorption of gases in rough pores: In Henry’s law region

Kang Yan-Shuang, Wang Hai-Jun, Sun Zong-Li
PDF
HTML
Get Citation
  • Henry constant and isosteric heat of adsorption are important parameters for characterizing the gas-solid interaction in an adsorption process. In order to better understand the adsorption behavior of gas in rough pores, we construct rough slit pores by using two rectangular corrugated substrates, and then calculate the potential profile in it. By utilizing classical statistical mechanics, the longitudinal Henry constant and isosteric heat of $ \text{H}_{2} $ are further calculated in the Henry region. The results suggest that both geometric morphology and pore width can significantly influence and modulate the longitudinal Henry constant and isosteric heat of the gas in the pore. Furthermore, the selectivity of adsorption in the binary $ \text{CO}_{2}/ \text{H}_{2} $ mixture is also calculated and investigated in the Henry region. In addition, the effects of corrugated substrates with different geometries on adsorption properties are also calculated and studied. The result can provide reliable theoretical basis for understanding the adsorption, separation and purification of the gas in porous materials, and it is also expected to provide helpful idea for designing and exploring new nano functional materials.
      Corresponding author: Wang Hai-Jun, whj@hbu.edu.cn ; Sun Zong-Li, sunzl@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21503077), the Fundamental Research Fund for the Central Universities of the Ministry of Education of China (Grant No. 2020MS147), and the Science and Technology Project of Hebei Education Department, China (Grant No. QN2018119)
    [1]

    Roque-Malherbe R M A 2018 Adsorption and Diffusion in Nanoporous Materials (2nd Ed.) (New York: CRC Press) pp51–77

    [2]

    Hill T L 1949 J. Chem. Phys. 17 520Google Scholar

    [3]

    Balbuena P B, Gubbins K E 1993 Langmuir 9 1801Google Scholar

    [4]

    Liu J, LeVan M D 2010 Carbon 48 3454Google Scholar

    [5]

    Do D D, Nicholson D, Do H D 2008 J. Colloid Interf. Sci. 324 15Google Scholar

    [6]

    Steele W 1973 Surf. Sci. 36 317Google Scholar

    [7]

    Maurer S, Mersmann A, Peukert W 2001 Chem. Eng. Sci. 56 3443Google Scholar

    [8]

    Jiang J W, Wagner N J, Sandler S I 2004 Phys. Chem. Chem. Phys. 6 4440Google Scholar

    [9]

    Do D D, Do H D, Wongkoblap A, Nicholson D 2008 Phys. Chem. Chem. Phys. 10 7293Google Scholar

    [10]

    Schindler B J, LeVan M D 2008 Carbon 46 644Google Scholar

    [11]

    Liu J, LeVan M D 2009 Carbon 47 3415Google Scholar

    [12]

    Do D D 1998 Adsorption Analysis: Equilibria and Kinetics (New Jersey: Imperial College Press) pp249–336

    [13]

    Wongkoblap A, Do D D 2007 Carbon 45 1527Google Scholar

    [14]

    Loi Q K, Horikawa T, Tan S, Prasetyo L, Do D D, Nicholson D 2020 Microporous Mesoporous Mater. 293 109762Google Scholar

    [15]

    Cracknell R F, Nicholson D, Quirke N 1993 Mol. Phys. 80 885Google Scholar

    [16]

    Cracknell R F, Nicholson D, Tennison S R, Bromhead J 1996 Carbon 2 193

    [17]

    Ben T, Li Y Q, Zhu L K, Zhang D L, Cao D P, Xiang Z H, Yao X D, Qiu S L 2012 Energy Environ. Sci. 5 8370Google Scholar

    [18]

    Principe I A, Fletcher A J 2020 Adsorption 26 723Google Scholar

    [19]

    Tan Z M, Gubbins K E 1992 J. Phys. Chem. 96 845Google Scholar

    [20]

    Maddox M W, Sowers S L, Gubbins K E 1996 Adsorption 2 23Google Scholar

    [21]

    Peng X, Cao D P, Zhao J S 2009 Sep. Purif. Technol. 68 50Google Scholar

    [22]

    Kumar K V, Rodriguez-Reinoso F 2012 RSC Adv. 2 9671Google Scholar

    [23]

    Wu T H, Firoozabadi A 2018 J. Phys. Chem. C 122 20727Google Scholar

    [24]

    袁俊鹏, 刘秀英, 李晓东, 于景新 2021 物理学报 70 156801Google Scholar

    Yuan J P, Liu X Y, Li X D, Yu J X 2021 Acta Phys. Sin. 70 156801Google Scholar

    [25]

    Nicholson D 2002 Mol. Phys. 100 2151Google Scholar

    [26]

    Trinh T T, Vlugt T J H, Hägg M B, Bedeaux D, Kjelstrup S 2013 Front. Chem. 1 38

    [27]

    Zeng Y H, Xu H, Horikawa T, Do D D, Nicholson D 2018 J. Phys. Chem. C 122 24171Google Scholar

    [28]

    Prasetyo L, Do D D, Nicholson D 2018 Chem. Eng. J. 334 143Google Scholar

    [29]

    Steele W A 1974 The Interaction of Gases with Solid Surfaces (Oxford: Pergamon Press) pp317–320

    [30]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1987 Intermolecular Forces: Their Origin and Determination (Oxford: Science Publications) pp493–504

    [31]

    Poling B E, Prausnitz J M, O’Connell J P 2001 The Properties of Gases and Liquids (5th Ed.) (New York: McGraw-Hill) ppB.1–B.2

    [32]

    Ravikovitch P I, Nishnyakov A, Russo R, Neimark A V 2000 Langmuir 16 2311Google Scholar

    [33]

    Ravikovitch P I, Nishnyakov A, Neimark A V 2001 Phys. Rev. E 64 011602Google Scholar

    [34]

    Frink L J D, van Swol F 1998 J. Chem. Phys. 108 5588Google Scholar

    [35]

    Ghatak C, Ayappa K G 2004 J. Chem. Phys. 120 9703Google Scholar

  • 图 1  (a)粗糙狭缝示意图, 绿色虚线包围的区域定义为狭缝中的I-类和II-类区域, 蓝色虚线表示气体分子可达空间的边界; (b)单个粗糙基板附近的气体分子的外势分布为$ V_{ \text{sub}}(y, z) $. 计算中取$ w_{1} = 1.36 $ nm, $ w_{2} = 2.04 $ nm, ${M} = 3 $

    Figure 1.  (a) Sketch of the rough slit pore. The regions surrounded by the green dash lines are type-I and type-II regions in the rough pore, while the blue dashed line stands for the boundary of the accessible volume of the gas molecular. (b) Profile of external potential $ V_{ \text{sub}}(y, z) $ near a rough substrate with $ w_{1} = 1.36 $ nm, $ w_{2} = 2.04 $ nm and ${M} = 3$

    图 2  石墨表面上不同气体的(a)等量吸附热$ q_{ \text{st}}^{0} $和(b)内禀Henry系数$ K_{ \text{H}} $. 线: 本文结果; 符号: MC模拟结果[28]. 其中S为基板面积

    Figure 2.  Isoteric heat of (a) adsorption $ q_{ \text{st}}^{0} $ and (b) inherent Henry constant $ K_{ \text{H}} $ of different gases on graphite surface. Lines: results of this work; symbols: results from MC simulations[28]. S is the area of substrate

    图 3  $ T = 298.15 $ K时, 光滑石墨狭缝中不同气体的$ q_{ \text{st}}^{0} $随缝宽H的变化. 线: 本文结果; 符号: MC模拟结果[10]

    Figure 3.  Dependence of $ q_{ \text{st}}^{0} $ on pore width H for different gases in smooth graphite slit pore at $ T = 298.15 $ K. Lines: results of this work; symbols: results from MC simulations[10]

    图 4  $ w_{1} = 1.36 $ nm和$ H = 3.0 $ nm情况下, 凸起高度D对粗糙狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响

    Figure 4.  Effect of D on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore in the case of $ w_{1} = 1.36 $ nm and $ H = 3.0 $ nm

    图 5  $ D = 0.34 $ nm和$ H = 1.5 $ nm情况下, 凸起宽度$ w_{1} $对粗糙狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响

    Figure 5.  Effect of $ w_{1} $ on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore in the case of $ D = 0.34 $ nm and $ H = 1.5 $ nm

    图 6  $ D = 0.34 $ nm和$ H = 1.5 $ nm情况下, 凸起间距$ w_{2} $对粗糙狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响

    Figure 6.  Effect of $ w_{2} $ on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore in the case of $ D = 0.34 $ nm and $ H = 1.5 $ nm

    图 7  $ w_{1}=w_{2}=1.36 $ nm的情况下, 基板间距H对粗糙狭缝中$ \rm{H}_{2} $$ K_{ \rm{L}} $$ q_{ \rm{st}}^{0} $的影响

    Figure 7.  Effect of H on $ K_{ \rm{L}} $ and $ q_{ \rm{st}}^{0} $ of $ \rm{H}_{2} $ in rough slit pore in the case of $ w_{1}=w_{2}=1.36 $ nm

    图 8  不同条件下, 基板几何形貌对吸附选择性$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响 (a) $ w_{1} = 1.36 $ nm, $ H = 3.0 $ nm时, D$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响; (b) $ D = 0.34 $ nm, $ H = 1.5 $ nm时, $ w_{1} $$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响; (c) $ D = 0.34 $ nm, $ H = 1.5 $ nm时, $ w_{2} $$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响

    Figure 8.  Effect of geometric morphology on the selectivity $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ in rough slit pore: (a) Effect of D on $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ with $ w_{1} = 1.36 $ nm and $ H = 3.0 $ nm; (b) effect of $ w_{1} $ on $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ with $ D = 0.34 $ nm and $ H = 1.5 $ nm; (c) effect of $ w_{2} $ on $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ with $ D = 0.34 $ nm and $ H = 1.5 $ nm

    图 9  $w_{1} = w_{2} = 1.36$ nm的情况下, 基板间距H$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响

    Figure 9.  Effect of H on selectivity $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ of $ \text{CO}_{2}/ \text{H}_{2} $ mixture confined in rough slit pore with $ w_{1} = w_{2} = 1.36 $ nm

    图 10  (a)—(c) 三角形和半圆形凸起对狭缝中$ \text{H}_{2} $$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的影响. 图中, 黑线和红线分别为$ K_{ \text{L}} $$ q_{ \text{st}}^{0} $的结果, 实线和虚线分别为三角形凸起和半圆形凸起情况下的结果. (d)—(f)三角形和半圆形凸起对对$ S_{ \text{CO}_{2}/ \text{H}_{2}} $的影响. 图中, 实线和虚线分别为三角形凸起和半圆形凸起情况下的结果. 需要说明的是, 在图(b)和图(e)中, 三角形凸起取$ w_{1} = 0.68 $ nm, 而在图(c)和图(f)中, 三角形凸起取$ w_{1} = 1.36 $ nm

    Figure 10.  (a)–(c) Effect of geometry on $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $ of $ \text{H}_{2} $ in rough slit pore with triangular and semicircular corrugated substrates. In these figures, black lines and red lines correspond to results for $ K_{ \text{L}} $ and $ q_{ \text{st}}^{0} $, respectively. In addition, solid and dashed lines stand for results of triangular and semicircular condition, respectively. (d)–(f) Effect of geometry on selectivity $ S_{ \text{CO}_{2}/ \text{H}_{2}} $ of $ \text{CO}_{2}/ \text{H}_{2} $ mixture in rough slit pore with triangular and semicircular corrugated substrates. In these figures, solid and dashed lines stand for results of triangular and semicircular condition, respectively. It should be noted that in panels (b) and (e), $ w_{1} = 0.68 $ nm is set for the triangular corrugated substrate, while in panels (c) and (f), it is set as $ w_{1} = 1.36 $ nm

    表 1  不同气体分子的LJ模型参数

    Table 1.  LJ model parameters of different gas molecular

    分子种类 $\sigma_{\text{gg}}$/nm $\varepsilon_{\text{gg}}/k_\text{B}$/K $\sigma_{\text{gs}}$/nm $\varepsilon_{\text{gs}}/k_\text{B}$/K 文献
    He 0.2560 10.21 0.2980 16.90 [29]
    Ne 0.2780 34.90 0.3080 31.26 [30]
    Ar 0.3405 119.80 0.3393 57.92 [30]
    Kr 0.3685 164.40 0.3533 67.85 [30]
    Xe 0.4100 221.00 0.3740 78.66 [30]
    $\text{H}_{2}$ 0.2830 59.70 0.3105 40.87 [31]
    $\text{N}_{2}$ 0.3575 94.45 0.3494 53.22 [32]
    $\text{CH}_{4}$ 0.3820 148.20 0.3600 64.40 [33]
    $\text{CO}_{2}$ 0.3454 235.90 0.3430 81.50 [32]
    DownLoad: CSV
  • [1]

    Roque-Malherbe R M A 2018 Adsorption and Diffusion in Nanoporous Materials (2nd Ed.) (New York: CRC Press) pp51–77

    [2]

    Hill T L 1949 J. Chem. Phys. 17 520Google Scholar

    [3]

    Balbuena P B, Gubbins K E 1993 Langmuir 9 1801Google Scholar

    [4]

    Liu J, LeVan M D 2010 Carbon 48 3454Google Scholar

    [5]

    Do D D, Nicholson D, Do H D 2008 J. Colloid Interf. Sci. 324 15Google Scholar

    [6]

    Steele W 1973 Surf. Sci. 36 317Google Scholar

    [7]

    Maurer S, Mersmann A, Peukert W 2001 Chem. Eng. Sci. 56 3443Google Scholar

    [8]

    Jiang J W, Wagner N J, Sandler S I 2004 Phys. Chem. Chem. Phys. 6 4440Google Scholar

    [9]

    Do D D, Do H D, Wongkoblap A, Nicholson D 2008 Phys. Chem. Chem. Phys. 10 7293Google Scholar

    [10]

    Schindler B J, LeVan M D 2008 Carbon 46 644Google Scholar

    [11]

    Liu J, LeVan M D 2009 Carbon 47 3415Google Scholar

    [12]

    Do D D 1998 Adsorption Analysis: Equilibria and Kinetics (New Jersey: Imperial College Press) pp249–336

    [13]

    Wongkoblap A, Do D D 2007 Carbon 45 1527Google Scholar

    [14]

    Loi Q K, Horikawa T, Tan S, Prasetyo L, Do D D, Nicholson D 2020 Microporous Mesoporous Mater. 293 109762Google Scholar

    [15]

    Cracknell R F, Nicholson D, Quirke N 1993 Mol. Phys. 80 885Google Scholar

    [16]

    Cracknell R F, Nicholson D, Tennison S R, Bromhead J 1996 Carbon 2 193

    [17]

    Ben T, Li Y Q, Zhu L K, Zhang D L, Cao D P, Xiang Z H, Yao X D, Qiu S L 2012 Energy Environ. Sci. 5 8370Google Scholar

    [18]

    Principe I A, Fletcher A J 2020 Adsorption 26 723Google Scholar

    [19]

    Tan Z M, Gubbins K E 1992 J. Phys. Chem. 96 845Google Scholar

    [20]

    Maddox M W, Sowers S L, Gubbins K E 1996 Adsorption 2 23Google Scholar

    [21]

    Peng X, Cao D P, Zhao J S 2009 Sep. Purif. Technol. 68 50Google Scholar

    [22]

    Kumar K V, Rodriguez-Reinoso F 2012 RSC Adv. 2 9671Google Scholar

    [23]

    Wu T H, Firoozabadi A 2018 J. Phys. Chem. C 122 20727Google Scholar

    [24]

    袁俊鹏, 刘秀英, 李晓东, 于景新 2021 物理学报 70 156801Google Scholar

    Yuan J P, Liu X Y, Li X D, Yu J X 2021 Acta Phys. Sin. 70 156801Google Scholar

    [25]

    Nicholson D 2002 Mol. Phys. 100 2151Google Scholar

    [26]

    Trinh T T, Vlugt T J H, Hägg M B, Bedeaux D, Kjelstrup S 2013 Front. Chem. 1 38

    [27]

    Zeng Y H, Xu H, Horikawa T, Do D D, Nicholson D 2018 J. Phys. Chem. C 122 24171Google Scholar

    [28]

    Prasetyo L, Do D D, Nicholson D 2018 Chem. Eng. J. 334 143Google Scholar

    [29]

    Steele W A 1974 The Interaction of Gases with Solid Surfaces (Oxford: Pergamon Press) pp317–320

    [30]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1987 Intermolecular Forces: Their Origin and Determination (Oxford: Science Publications) pp493–504

    [31]

    Poling B E, Prausnitz J M, O’Connell J P 2001 The Properties of Gases and Liquids (5th Ed.) (New York: McGraw-Hill) ppB.1–B.2

    [32]

    Ravikovitch P I, Nishnyakov A, Russo R, Neimark A V 2000 Langmuir 16 2311Google Scholar

    [33]

    Ravikovitch P I, Nishnyakov A, Neimark A V 2001 Phys. Rev. E 64 011602Google Scholar

    [34]

    Frink L J D, van Swol F 1998 J. Chem. Phys. 108 5588Google Scholar

    [35]

    Ghatak C, Ayappa K G 2004 J. Chem. Phys. 120 9703Google Scholar

  • [1] Zhang Jie, Chen Ai-Xi, Peng Ze-An. Spatially oriented correlated emission based on selective drive of diatomic superradiance states. Acta Physica Sinica, 2024, 73(14): 144202. doi: 10.7498/aps.73.20240521
    [2] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211815
    [3] Xiao You-Peng, Gao Chao, Wang Tao, Zhou Lang. Carrier selective contacts:a selection of high efficiency silicon solar cells. Acta Physica Sinica, 2017, 66(15): 158801. doi: 10.7498/aps.66.158801
    [4] Kang Rong-Zong, Tian Peng-Wu, Yu Hong-Yi. An adaptive compressed sensing method based on selective measure. Acta Physica Sinica, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [5] Wang Yuan-Qian, He Jun, Xiao Si, Yang Neng-An, Chen Huo-Zhang. Wavelength selective optical limiting effect on MoS2 solution. Acta Physica Sinica, 2014, 63(14): 144204. doi: 10.7498/aps.63.144204
    [6] Liu Ming, Zhang Shu-Lin, Li Hua, Qiu Yang, Zeng Jia, Zhang Guo-Feng, Wang Yong-Liang, Kong Xiang-Yan, Xie Xiao-Ming. Study of a selective averaging method for magnetocardiography-based noise suppression. Acta Physica Sinica, 2013, 62(9): 098501. doi: 10.7498/aps.62.098501
    [7] Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [8] Cui Guang-Bin, Miao Jun-Gang, Zhang Yong-Fang. Design of waveguide array frequency selective surface filter in sub-millimeter wave band. Acta Physica Sinica, 2012, 61(22): 224102. doi: 10.7498/aps.61.224102
    [9] Dong Chang-Sheng, Gu Yu, Zhong Min-Lin, Ma Ming-Xing, Huang Ting, Liu Wen-Jin. Fabrication of nanoporous metal by selective electrochemical dealloying from laser cladding Cu-Mn alloys. Acta Physica Sinica, 2012, 61(9): 094211. doi: 10.7498/aps.61.094211
    [10] Xu Yu-Li, Chen Xue-Qian, Chen Hou-Yang, Xu Shou-Hong, Liu Hong-Lai. Selective adsorption of small molecules on grafted polymers. Acta Physica Sinica, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [11] He Ji-Zhou, He Bing-Xiang. Energy selective electron heat pump with transmission probability. Acta Physica Sinica, 2010, 59(4): 2345-2349. doi: 10.7498/aps.59.2345
    [12] Yuan Zheng, Liu Shen-Ye, Cao Zhu-Rong, Li Yun-Feng, Chen Tao, Li Hang, Zhang Hai-Ying, Chen Ming. Selective photoemission of Au photocathode. Acta Physica Sinica, 2010, 59(7): 4967-4971. doi: 10.7498/aps.59.4967
    [13] Cai Cong-Zhong, Pei Jun-Fang, Wen Yu-Feng, Zhu Xing-Jian, Xiao Ting-Ting. Density prediction of selective laser sintering parts based on support vector regression. Acta Physica Sinica, 2009, 58(13): 8-S14. doi: 10.7498/aps.58.8
    [14] Guo Zeng-Yuan, Cao Bing-Yang. A general heat conduction law based on the concept of motion of thermal mass. Acta Physica Sinica, 2008, 57(7): 4273-4281. doi: 10.7498/aps.57.4273
    [15] Gao Wei, Lü Zhi-Wei, He Wei-Ming, Zhu Cheng-Yu, Dong Yong-Kang. Research on selective optical amplification of Brillouin spectrum of weak scattering signals in water. Acta Physica Sinica, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [16] Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [17] YAN LONG, ZHANG YONG-PING, PENG YI-PING, PANG SHI-JIN, GAO HONG-JUN. THE PREFERENTIAL ADSORPTION OF Ge ON Si(111)7×7 SURFACE. Acta Physica Sinica, 2001, 50(11): 2132-2136. doi: 10.7498/aps.50.2132
    [18] DAI CHANG-JIAN, XU CHANG-JIANG. SELECTIVE PHOTOIONIZATION OF ISOTOPIC ATOMS WITH PULSED LASERS. Acta Physica Sinica, 1994, 43(3): 356-368. doi: 10.7498/aps.43.356
    [19] LIU HOU-XIANG, LI ZHAO-LIN, LI SHU-TAO, HAN JING-CHENG, WU CUN-KAI. A STUDY OF STATE-SELECTED MULTIPHOTON IONIZATION OF FORMALDEHYDE. Acta Physica Sinica, 1988, 37(3): 470-474. doi: 10.7498/aps.37.470
    [20] Yin Zhi-qiang. SPUTTERED ALUMINIUM-CARBON-OXYGEN SOLAR SELECTIVE ABSORBING SURFACES. Acta Physica Sinica, 1986, 35(10): 1369-1373. doi: 10.7498/aps.35.1369
Metrics
  • Abstract views:  5310
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2021
  • Accepted Date:  10 March 2022
  • Available Online:  02 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回