Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kilometer-level laser reflective tomography experiment and debris barycenter estimation

Zhang Xin-Yuan Hu Yi-Hua Shen Shi-Yang Fang Jia-Jie Wang Yi-Cheng Liu Yi-Fan Han Fei

Citation:

Kilometer-level laser reflective tomography experiment and debris barycenter estimation

Zhang Xin-Yuan, Hu Yi-Hua, Shen Shi-Yang, Fang Jia-Jie, Wang Yi-Cheng, Liu Yi-Fan, Han Fei
PDF
HTML
Get Citation
  • Removal of the numerous centimeter-level space debris in low Earth orbit by using high-power lasers is always a hot topic of international academic research. Specifically, the precise positioning of space debris and high-precision measurement of barycenter range of debris are the key points and worldwide problems that need to be promptly solved. As a new remote high-resolution imaging method, laser reflective tomography is an effective approach to detecting the dark targets in remote space with its imaging resolution independent of the detection range. Hence, a centimeter-level space debris barycenter model is established according to the principle of laser reflective tomography in order to analyze the relative movement of debris and detector. On this basis, an approach to estimating the barycenter range of centimeter-level space debris is proposed to carry out the experimental verification of 1km detection range laser reflective tomography. The experimental results show that this method can improve the accuracy of barycenter detection from 1.50 cm to 0.34 cm, which is an effective measure for realizing high-precision measurement of barycenter ranges of centimeter-level space debris. Furthermore, this study achieves a breakthrough in kilometer-level laser reflective tomography experiments and theory of validation, and the kilometer-level laser reflective tomography has a great application prospect and technical potential.
      Corresponding author: Hu Yi-Hua, skl_hyh@163.com ; Han Fei, feihan@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871389), the Research Plan Project of the National University of Defense Technology, China (Grant No. ZK18-01-02), and the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20190055).
    [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51Google Scholar

    [2]

    Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 45Google Scholar

    [3]

    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J J 2010 Propul. Power 26 609Google Scholar

    [4]

    金星, 洪延姬, 李修乾 2012 强激光与粒子束 24 281Google Scholar

    Jin X, Hong Y J, Li X Q 2012 High Power Part. Beam 24 281Google Scholar

    [5]

    洪延姬, 金星, 常浩 2016 红外与激光工程 45 9Google Scholar

    Hong Y J, Jin X, Chang H 2016 Infrared Laser Eng. 45 9Google Scholar

    [6]

    扈荆夫, 杨福民, 张忠萍, Hamal K, Prochazka I, Blazej J 2004 中国科学G辑: 物理学 力学 天文学 34 711

    Hu Y F, Yang F M, Zhang Z P, Hamal K, Prochazka I, Blazej 2004 Sci. China Ser. G 34 711

    [7]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y 2016 Opt. Express 24 3535Google Scholar

    [8]

    杨福民, 陈婉珍, 张忠萍, 陈菊平, 扈荆夫, 李鑫, Prochazka I, Hamal K 2002 中国科学(A辑) 32 935Google Scholar

    Yang F M, Chen W Z, Zhang Z P, Chen J P, Hu J F, Li X, Prochazka I, Hamal K 2002 Sci. China Ser. A 32 935Google Scholar

    [9]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 物理学报 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Chen X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [10]

    李语强, 李祝莲, 伏红林, 郑向明, 何少辉, 翟东升, 熊耀恒 2011 中国激光 38 160Google Scholar

    Li Y Q, Li Z L, Fu H L, Zheng X M, He S H, Zhai D S, Xiong Y H 2011 Chin. J. Lasers 38 160Google Scholar

    [11]

    Zhang H F, Long M L, Deng H R, Cheng S Y, Wu Z B, Zhang Z P, Zhang A L, Sun J T 2021 Appl. Sci. 11 10080Google Scholar

    [12]

    Bai X R, Xing M D, Zhou F, Bao Z 2009 IEEE Trans. Geosci. Remote Sens. 47 2352Google Scholar

    [13]

    Sun T, Shan X M, Chen J 2014 IEEE Geosci. Remote S. 11 1041Google Scholar

    [14]

    Morselli A, Lizia P D, Armellin R, Bianchi G, Bortolotti C, Montebugnoli S, Naldi G, Perini F, Pupillo G, Roma M, Schiaffino M, Mattana A, Salerno E, Sergiusti A L, Magro A, Adami K Z, Villadei W, Dolce F, Reali M, Paoli J IEEE Metrology for Aerospace Italy, Benevento, June 4–5, 2015 p562

    [15]

    Xi J B, Wen D S, Ersoy O K, Yi H W, Yao D L, Song Z X, Xi S B 2016 Appl. Opt. 55 7929Google Scholar

    [16]

    胡以华, 张鑫源, 徐世龙, 赵楠翔, 石亮 2021 中国激光 48 13Google Scholar

    Hu Y H, Zhang X Y, Xu S L, Zhao N X, Shi L 2021 Chin. J. Lasers 48 13Google Scholar

    [17]

    Parker J K, Craig E B, Klick D I, Knight F K, Kulkarni S R, Marino R M, Senning J R, Tussey B K 1988 Appl. Opt. 27 2642Google Scholar

    [18]

    Matson C L, Mosley D E 2001 Appl. Opt. 40 2290Google Scholar

    [19]

    Murray J, Triscari J, Fetzer G, Epstein R, Plath J, Ryder W, Van L N Applications of Lasers for Sensing and Free Space Communications San Diego, CA, United states, January 31–February 3, 2010 pLSWA1

    [20]

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Opt. Commun. 283 3472Google Scholar

    [21]

    Lin F, Wang J C, Lei W H, Hu Y H 2017 Opt. Commun. 402 540Google Scholar

    [22]

    金鑫, 李亮, 陈志强, 徐荣栏, 黄娅, 张丽 2011 地球物理学报 54 1691Google Scholar

    Jin X, Li L, Chen Z Q, Xu R L, Huang Y, Zhang L 2011 Acta Petpol. Sin. 54 1691Google Scholar

    [23]

    Chen J B, Sun H Y 2020 Opt. Commun. 455 124548Google Scholar

    [24]

    谷雨, 胡以华, 郝士琦, 王金诚, 王迪 2011 光学学报 54 1691Google Scholar

    Gu Y, Hu Y H, Hao S Q, Wang J C, Wang D 2011 Acta Opt. Sin. 54 1691Google Scholar

    [25]

    Natter F, Wang G 2002 Med. Phys. 29 107Google Scholar

    [26]

    宋大伟, 尚社, 李小军, 罗熹, 孙文锋, 范晓彦, 李栋 2016 红外与激光工程 45 76Google Scholar

    Song D W, Shang S, Li X J, Luo X, Sun W F, Fan X Y, Li D 2016 Infrared Laser Eng. 45 76Google Scholar

    [27]

    金晓峰, 孙建锋, 严毅, 周煜, 刘立人 2010 光学学报 30 747Google Scholar

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Acta Opt. Sin. 30 747Google Scholar

    [28]

    Candes E J, Romberg J K, Tao T 2006 Commun. Pur. Appl. Math. 59 1207Google Scholar

    [29]

    Romberg J 2008 IEEE Signal Proc. Mag. 25 14Google Scholar

    [30]

    Sidky E Y, Chartrand R, Pan X C IEEE Nuclear Science Symposium and Medical Imaging Conference Honolulu, HI, United states, October 27–November 3, 2007, p3526

  • 图 1  LRT示意图 (a) 目标投影; (b) 数据反投影

    Figure 1.  Schematic diagram of LRT: (a) Target projection; (b) data back-projection.

    图 2  LRT雷达样机原理图, 其中 R表示反射镜, NPBS表示消偏振分光棱镜, APD表示雪崩光电二极管, Pin表示光电二极管, SMF表示单模光纤, MC laser表示微片激光器

    Figure 2.  Schematic diagram of LRT radar prototype, where R is reflector, NPBS is non-polarizing beam splitter, APD is avalanche photodiode, Pin is positive intrinsic negative, SMF is single mode fiber, and MC laser is microchip laser.

    图 3  典型空间碎片模型 (a)结构示意图; (b)遮挡效应示意图

    Figure 3.  Typical space debris model: (a) Structure diagram; (b) diagram of shielding effect.

    图 4  (a) 实验装置图; (b) 1 km实验验证示意图

    Figure 4.  (a) Diagram of the experimental set-up; (b) diagram of 1 km experiment verification.

    图 5  多角度激光回波和峰值点距离确定转动周期

    Figure 5.  Multi-angle laser echoes and the peak point range determined the period of rotation.

    图 6  补全后的多角度激光回波和目标重构图像 (a) 凹面对应回波数据的FBP重构图像; (b) 凸面对应回波数据的FBP重构图像

    Figure 6.  Multi-angle laser echoes after completion and reconstructed image of target: (a) Image reconstruction by FBP based on the echo data of concave surface; (b) image reconstruction by FBP based on the echo data of convex surface.

    图 7  采样间隔1°的目标重构图像与质心确定结果. FBP重构图像 (a) 质心距离校正前; (b) 质心距离校正后. 阈值分割图像 (c) 质心距离校正前; (d) 质心距离校正后

    Figure 7.  Target reconstruction image with sampling interval of 1° and barycenter determination results. Image reconstruction by FBP: (a) Barycenter range before correction; (b) barycenter range after corrected. Threshold segmentation image: (c) Barycenter range before correction; (d) barycenter range after corrected.

    图 8  采样间隔7°的目标重构图像与质心确定结果. FBP重构图像 (a) 质心距离校正前; (b) 质心距离第一次校正后; (c) 质心距离第二次校正后. 阈值分割图像与质心确定结果 (d) 质心距离校正前; (e) 质心距离第一次校正后; (f) 质心距离第二次校正后

    Figure 8.  Target reconstruction image with sampling interval of 7° and barycenter determination results. Image reconstruction by FBP: (a) Barycenter range before correction; (b) barycenter range after first corrected; (c) barycenter range after second corrected. Threshold segmentation image and barycenter determination results: (d) Barycenter range before correction; (e) barycenter range after first corrected; (f) barycenter range after second corrected.

    图 9  采样间隔20°的目标重构图像与质心确定结果. FBP重构图像 (a) 质心距离校正前; (b) 质心距离校正后. 阈值分割图像; (c) 质心距离校正前; (d) 质心距离校正后

    Figure 9.  Target reconstruction image with sampling interval of 20° and barycenter determination results. Image reconstruction by FBP: (a) Barycenter range before correction; (b) barycenter range after corrected. Threshold segmentation image: (c) Barycenter range before correction; (d) barycenter range after corrected.

    表 1  LRT雷达样机关键参数

    Table 1.  Key parameters of the LRT radar prototype.

    参数/单位数值参数/单位数值
    工作波长$\lambda $/nm1064APD模块带宽$B{W_1}$/GHz7.5
    脉冲宽度$\tau $/ps93APD模块灵敏度${S_1}$/dBm–25.5
    单脉冲能量$E$/μJ10Pin模块带宽$B{W_2}$/GHz15
    重复频率$f$/Hz10Pin模块灵敏度${S_2}$/dBm–27
    激光发射发散角$\theta $/mrad0.22高速采集器带宽$B{W_3}$/GHz4.25
    望远系统口径D/m0.1高速采集器采样率fs/GSPS50
    望远系统视场角$\omega $/mrad0.3高速采集器触发延时t/μs6.546
    DownLoad: CSV

    表 2  采样间隔1°的目标重构图像校正前后质心距离和质心确定误差结果比较

    Table 2.  Comparison of barycenter range and determination error before or after target reconstruction image correction with sampling interval of 1°.

    类型质心距离质心确定误差
    R/m确定值E0/cm实际值E/cm
    质心距离校正前2.22461.291.54
    质心距离校正后2.23660.140.34
    DownLoad: CSV

    表 3  采样间隔7°的目标重构图像校正前后的质心距离和质心确定误差结果比较

    Table 3.  Comparison of barycenter range and determination error before or after target reconstruction image correction with sampling interval of 7°.

    类型质心距离质心确定误差
    R/m确定值E0/cm实际值E/cm
    质心距离校正前2.20212.431.79
    质心距离第一次校正后2.23200.390.80
    质心距离第二次校正后2.23500.220.50
    DownLoad: CSV

    表 4  采样间隔20°的目标重构图像校正前后质心距离和质心确定误差结果比较

    Table 4.  Comparison of barycenter range and determination error before or after target reconstruction image correction with sampling interval of 20°.

    类型质心距离质心确定误差
    R/m确定值E0/cm实际值E/cm
    质心距离校正前2.21700.702.30
    质心距离校正后2.22300.151.70
    DownLoad: CSV
  • [1]

    Bonnal C, Ruault J M, Desjean M C 2013 Acta Astronaut. 85 51Google Scholar

    [2]

    Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 45Google Scholar

    [3]

    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J J 2010 Propul. Power 26 609Google Scholar

    [4]

    金星, 洪延姬, 李修乾 2012 强激光与粒子束 24 281Google Scholar

    Jin X, Hong Y J, Li X Q 2012 High Power Part. Beam 24 281Google Scholar

    [5]

    洪延姬, 金星, 常浩 2016 红外与激光工程 45 9Google Scholar

    Hong Y J, Jin X, Chang H 2016 Infrared Laser Eng. 45 9Google Scholar

    [6]

    扈荆夫, 杨福民, 张忠萍, Hamal K, Prochazka I, Blazej J 2004 中国科学G辑: 物理学 力学 天文学 34 711

    Hu Y F, Yang F M, Zhang Z P, Hamal K, Prochazka I, Blazej 2004 Sci. China Ser. G 34 711

    [7]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y 2016 Opt. Express 24 3535Google Scholar

    [8]

    杨福民, 陈婉珍, 张忠萍, 陈菊平, 扈荆夫, 李鑫, Prochazka I, Hamal K 2002 中国科学(A辑) 32 935Google Scholar

    Yang F M, Chen W Z, Zhang Z P, Chen J P, Hu J F, Li X, Prochazka I, Hamal K 2002 Sci. China Ser. A 32 935Google Scholar

    [9]

    孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬 2020 物理学报 69 019502Google Scholar

    Meng W D, Zhang H F, Deng H R, Tang K, Wu Z B, Wang Y R, Wu G, Zhang Z P, Chen X Y 2020 Acta Phys. Sin. 69 019502Google Scholar

    [10]

    李语强, 李祝莲, 伏红林, 郑向明, 何少辉, 翟东升, 熊耀恒 2011 中国激光 38 160Google Scholar

    Li Y Q, Li Z L, Fu H L, Zheng X M, He S H, Zhai D S, Xiong Y H 2011 Chin. J. Lasers 38 160Google Scholar

    [11]

    Zhang H F, Long M L, Deng H R, Cheng S Y, Wu Z B, Zhang Z P, Zhang A L, Sun J T 2021 Appl. Sci. 11 10080Google Scholar

    [12]

    Bai X R, Xing M D, Zhou F, Bao Z 2009 IEEE Trans. Geosci. Remote Sens. 47 2352Google Scholar

    [13]

    Sun T, Shan X M, Chen J 2014 IEEE Geosci. Remote S. 11 1041Google Scholar

    [14]

    Morselli A, Lizia P D, Armellin R, Bianchi G, Bortolotti C, Montebugnoli S, Naldi G, Perini F, Pupillo G, Roma M, Schiaffino M, Mattana A, Salerno E, Sergiusti A L, Magro A, Adami K Z, Villadei W, Dolce F, Reali M, Paoli J IEEE Metrology for Aerospace Italy, Benevento, June 4–5, 2015 p562

    [15]

    Xi J B, Wen D S, Ersoy O K, Yi H W, Yao D L, Song Z X, Xi S B 2016 Appl. Opt. 55 7929Google Scholar

    [16]

    胡以华, 张鑫源, 徐世龙, 赵楠翔, 石亮 2021 中国激光 48 13Google Scholar

    Hu Y H, Zhang X Y, Xu S L, Zhao N X, Shi L 2021 Chin. J. Lasers 48 13Google Scholar

    [17]

    Parker J K, Craig E B, Klick D I, Knight F K, Kulkarni S R, Marino R M, Senning J R, Tussey B K 1988 Appl. Opt. 27 2642Google Scholar

    [18]

    Matson C L, Mosley D E 2001 Appl. Opt. 40 2290Google Scholar

    [19]

    Murray J, Triscari J, Fetzer G, Epstein R, Plath J, Ryder W, Van L N Applications of Lasers for Sensing and Free Space Communications San Diego, CA, United states, January 31–February 3, 2010 pLSWA1

    [20]

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Opt. Commun. 283 3472Google Scholar

    [21]

    Lin F, Wang J C, Lei W H, Hu Y H 2017 Opt. Commun. 402 540Google Scholar

    [22]

    金鑫, 李亮, 陈志强, 徐荣栏, 黄娅, 张丽 2011 地球物理学报 54 1691Google Scholar

    Jin X, Li L, Chen Z Q, Xu R L, Huang Y, Zhang L 2011 Acta Petpol. Sin. 54 1691Google Scholar

    [23]

    Chen J B, Sun H Y 2020 Opt. Commun. 455 124548Google Scholar

    [24]

    谷雨, 胡以华, 郝士琦, 王金诚, 王迪 2011 光学学报 54 1691Google Scholar

    Gu Y, Hu Y H, Hao S Q, Wang J C, Wang D 2011 Acta Opt. Sin. 54 1691Google Scholar

    [25]

    Natter F, Wang G 2002 Med. Phys. 29 107Google Scholar

    [26]

    宋大伟, 尚社, 李小军, 罗熹, 孙文锋, 范晓彦, 李栋 2016 红外与激光工程 45 76Google Scholar

    Song D W, Shang S, Li X J, Luo X, Sun W F, Fan X Y, Li D 2016 Infrared Laser Eng. 45 76Google Scholar

    [27]

    金晓峰, 孙建锋, 严毅, 周煜, 刘立人 2010 光学学报 30 747Google Scholar

    Jin X F, Sun J F, Yan Y, Zhou Y, Liu L R 2010 Acta Opt. Sin. 30 747Google Scholar

    [28]

    Candes E J, Romberg J K, Tao T 2006 Commun. Pur. Appl. Math. 59 1207Google Scholar

    [29]

    Romberg J 2008 IEEE Signal Proc. Mag. 25 14Google Scholar

    [30]

    Sidky E Y, Chartrand R, Pan X C IEEE Nuclear Science Symposium and Medical Imaging Conference Honolulu, HI, United states, October 27–November 3, 2007, p3526

  • [1] Bao Dong, Hua Deng-Xin, Qi Hao, Wang Jun. Method of remotely sensing seawater salinity fine detection based on Raman Brillouin scattering. Acta Physica Sinica, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [2] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [3] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [4] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [5] Sun Guo-Dong, Qin Lai-An, Zhang Si-Long, He Feng, Tan Feng-Fu, Jing Xu, Hou Zai-Hong. A new method of measuring boundary value of atmospheric extinction coefficient. Acta Physica Sinica, 2018, 67(5): 054205. doi: 10.7498/aps.67.20172008
    [6] Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei. Measurement of absorption spectrum around 1.572 μm. Acta Physica Sinica, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [7] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [8] Rao Zhi-Min, Hua Deng-Xin, He Ting-Yao, Le Jing. Research and analysis on lidar performance with intrinsic fluorescence biological aerosol measurements. Acta Physica Sinica, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [9] Zhu Xiang-Fei, Lin Zhao-Xiang, Liu Lin-Mei, Shao Jun-Yi, Gong Wei. Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar. Acta Physica Sinica, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [11] Di Hui-Ge, Hua Deng-Xin, Wang Yu-Feng, Yan Qing. Investigation on the correction of the Mie scattering lidar's overlapping factor and echo signals over the total detection range. Acta Physica Sinica, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [12] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [13] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Shi Sheng-Wei, Ma Zhi-Guo, Liu Tao, Wang Yu-Hong. Large dynamic range receiving technology with energy consumption based on wake lidar. Acta Physica Sinica, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [14] Shen Fa-Hua, Shu Zhi-Feng, Sun Dong-Song, Wang Zhong-Chun, Xue Xiang-Hui, Chen Ting-Di, Dou Xian-Kang. Improvement of wind retrieval algorithm for Rayleigh Doppler lidar. Acta Physica Sinica, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [15] Lian Tian-Hong, Wang Shi-Yu, Guo Zhen, Li Bing-Bin, Cai De-Fang, Wen Jian-Guo. A coherently combined laser beam for lidar. Acta Physica Sinica, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] Shu Zhi-Feng, Dou Xian-Kang, Wang Zhong-Chun, Shen Fa-Hua, Sun Dong-Song, Xue Xiang-Hui, Chen Ting-Di. Wind retrieval algorithm of Rayleigh Doppler lidar. Acta Physica Sinica, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] Wang Min, Hu Shun-Xing, Fang Xin, Wang Shao-Lin, Cao Kai-Fa, Zhao Pei-Tao, Fan Guang-Qiang, Wang Ying-Jian. Precise correction for the troposphere target location error based on lidar. Acta Physica Sinica, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [18] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [20] Guo Guan-Jun, Shao Yun. Rough surfaces induced speckle effects on detection performance of pulsed laser radar. Acta Physica Sinica, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
Metrics
  • Abstract views:  3242
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2022
  • Accepted Date:  27 February 2022
  • Available Online:  09 March 2022
  • Published Online:  05 June 2022

/

返回文章
返回