Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Narrowing the absorption linewidth and its limitation in a four-level inverted-Y atomic system

Di Feng-Qing Jia Ning Qian Jing

Citation:

Narrowing the absorption linewidth and its limitation in a four-level inverted-Y atomic system

Di Feng-Qing, Jia Ning, Qian Jing
PDF
HTML
Get Citation
  • Depending on a four-level inverted-Y atomic system, we demonstrate the limitation of linewidth-narrowing for the probe absorption spectrum in the electromagnetic induced absorption platform. Thanks to the use of an auxiliary control field which couples one hyperfine ground state and one middle-excited state we show that the linewidth limitation can be constrained by a coherence decay rate between two hyperfine ground states, rather than by the decay rate between the ground and the excited states as in previous Ladder schemes. That fact makes the theoretically-predicted absorption linewidth at least two orders of magnitude narrower. By using a suitable adjustment for the control-field amplitude and the detuning we numerically show that an extremely-narrowed probe absorption spectrum accompanied by a higher spectra contrast can be obtained, which confirms well with our theoretical predictions. We study the transient time response to the absorption spectrum and show that a relatively longer response time arises due to the small coherence decay rate between two hyperfine ground states. Furthermore, we reduce the influence on linewidth-narrowing from the Doppler effect via an optimized design of lasers, and reveal that no Doppler-free effect exists due to the lack of three-photon process. Our results may pave a route to the development of high-resolution spectroscopy in current experiments.
      Corresponding author: Jia Ning, jianing09@gmail.com ; Qian Jing, jqian@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174106, 11474094, 12104308)
    [1]

    Hartmann J M, Sironneau V, Boulet C, Svensson T, Hodges J T, Xu C T 2013 Phys. Rev. A 87 032510Google Scholar

    [2]

    Thomas T D, Kukk E, Ueda K, Ouchi T, Sakai K, Carroll T X, Nicolas C, Travnikova O, Miron C 2011 Phys. Rev. Lett. 106 193009Google Scholar

    [3]

    Lukin M D, Fleischhauer M, Zibrov A S, Robinson H G, Velichansky V L, Hollberg L, Scully M O 1997 Phys. Rev. Lett. 79 2959Google Scholar

    [4]

    Lambo R, Xu C Y, Pratt S T, Xu H, Zappala J C, Bailey K G, Lu Z T, Mueller P, O’Connor T P, Kamorzin B B, Bezrukov D S, Xie Y Q, Buchachenko A A, Singh J T 2021 Phys. Rev. A 104 062809Google Scholar

    [5]

    Budker D, Yashchuk V, Zolotorev M 1998 Phys. Rev. Lett. 81 5788Google Scholar

    [6]

    Iftiquar S M, Karve G R, Natarajan V 2008 Phys. Rev. A 77 063807Google Scholar

    [7]

    Tay J W, Farr W G, Ledingham P M, Korystov D, Longdell J J 2013 Phys. Rev. A 87 063824Google Scholar

    [8]

    Narducci L M, Scully M O, Oppo G L, Ru P, Tredicce J R 1990 Phys. Rev. A 42 1630Google Scholar

    [9]

    Gauthier D J, Zhu Y, Mossberg T W 1991 Phys. Rev. Lett. 66 2460Google Scholar

    [10]

    Zhu Y, Wasserlauf T N 1996 Phys. Rev. A 54 3653Google Scholar

    [11]

    Rapol U D, Wasan A, Natarajan V 2003 Phys. Rev. A 67 053802Google Scholar

    [12]

    Iftiquar S M, Natarajan V 2009 Phys. Rev. A 79 013808Google Scholar

    [13]

    Ye C Y, Zibrov A S, Rostovtsev Y, Scully M O 2002 Phys. Rev. A 65 043805Google Scholar

    [14]

    Goren C, Wilson-Gordon A D, Rosenbluh M, Friedmann H 2004 Phys. Rev. A 69 063802Google Scholar

    [15]

    Yang L J, Zhang L S, Zhuang Z H, Guo Q L, Fu G S 2008 Chin. Phys. B 17 2147Google Scholar

    [16]

    Mondal S, Ghosh A, Islam K, Bandyopadhyay A 2019 Laser Phys. 29 075204Google Scholar

    [17]

    Mu Y, Qin L, Shi Z Y, Huang G X 2021 Phys. Rev. A 103 043709Google Scholar

    [18]

    Hou B P, Wang S J, Yu W L, Sun W L 2004 Phys. Rev. A 69 053805Google Scholar

    [19]

    Dutta B K, Mahapatra P K 2008 J. Phys. B 41 055501Google Scholar

    [20]

    Qi J B 2010 Phys. Scr. 81 015402Google Scholar

    [21]

    Ghosh A, Islam K, Bhattacharyya D, Bandyopadhyay A 2016 J. Phys. B 49 195401Google Scholar

    [22]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [23]

    Naweed A, Farca G, Shopova S I, Rosenberger A T 2005 Phys. Rev. A 71 043804Google Scholar

    [24]

    Stassi R, Macrì V, Kockum A F, Stefano O D, Miranowicz A, Savasta S, Nori F 2017 Phys. Rev. A 96 023818Google Scholar

    [25]

    Adhikari P, Hafezi M, Taylor J M 2013 Phys. Rev. Lett. 110 060503Google Scholar

    [26]

    Chai X, Ropagnol X, Raeis-Zadeh S M, Reid M, Safavi-Naeini S, Ozaki T 2018 Phys. Rev. Lett. 121 143901Google Scholar

    [27]

    Prehn A, Ibrügger M, Rempe G, Zeppenfeld M 2021 Phys. Rev. Lett. 127 173602Google Scholar

    [28]

    Gustin C, Hanschke L, Boos K, Müller J R A, Kremser M, Finley J J, Hughes S, Müller K 2021 Phys. Rev. Res. 3 013044Google Scholar

    [29]

    Rose W, Haas H, Chen A Q, Jeon N, Lauhon L J, Cory D G, Budakian R 2018 Phys. Rev. X 8 011030

    [30]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [31]

    Li Y, Xiao M 1995 Phys. Rev. A 51 4959Google Scholar

    [32]

    Giner L, Veissier L, Sparkes B, Sheremet A S, Nicolas A, Mishina O S, Scherman M, Burks S, Shomroni I, Kupriyanov D V, Lam P K, Giacobino E, Laurat J 2013 Phys. Rev. A 87 013823Google Scholar

    [33]

    Zhu C J, Tan C H, Huang G X 2013 Phys. Rev. A 87 043813Google Scholar

    [34]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604Google Scholar

    [35]

    Sheng D, Pérez Galván A, Orozco L A 2008 Phys. Rev. A 78 062506Google Scholar

    [36]

    Bharti V, Wasan A 2012 J. Phys. B 45 185501Google Scholar

    [37]

    周炳琨 2009 激光原理 (北京: 国防工业出版社) 第129页

    Zhou B K 2009 Laser Principle (Beijing: National Defense Industry Press) p129 (in Chinese)

    [38]

    Berman P R, Salomaa R 1982 Phys. Rev. A 25 2667Google Scholar

    [39]

    Schmidt-Eberle S, Stolz T, Rempe G, Dürr S 2020 Phys. Rev. A 101 013421Google Scholar

    [40]

    Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Res. 2 043339Google Scholar

    [41]

    Pack M V, Camacho R M, Howell J C 2007 Phys. Rev. A 76 013801Google Scholar

    [42]

    Feng L, Li P X, Zhang M Z, Wang T, Xiao Y H 2014 Phys. Rev. A 89 013815Google Scholar

    [43]

    Van Dyke J S, Kandel Y P, Qiao H F, Nichol J M, Economou S E, Barnes E 2021 Phys. Rev. B 103 245303Google Scholar

    [44]

    Blok M S, Ramasesh V V, Schuster T, O’Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I 2021 Phys. Rev. X 11 021010

    [45]

    Zhang Y, Qiao J B, Yin L J, He L 2018 Phys. Rev. B 98 045413Google Scholar

    [46]

    de Boo G G, Yin C M, Rančić M, Johnson B C, McCallum J C, Sellars M J, Rogge S 2020 Phys. Rev. B 102 155309Google Scholar

    [47]

    Longhi S 2008 Phys. Rev. A 77 015807Google Scholar

    [48]

    Yang Z J, Lustig E, Harari G, Plotnik Y, Lumer Y, Bandres M A, Segev M 2020 Phys. Rev. X 10 011059

    [49]

    Bai S Y, Bao Q Q, Tian X D, Liu Y M, Wu J H 2018 J. Phys. B 51 075502Google Scholar

    [50]

    Chen T L, Chang S Y, Huang Y J, Shukla K, Huang Y C, Suen T H, Kuan T Y, Shy J T, Liu Y W 2020 Phys. Rev. A 101 052507Google Scholar

    [51]

    Tauschinsky A, Newell R, van Linden van den Heuvell H B, Spreeuw R J C 2013 Phys. Rev. A 87 042522Google Scholar

    [52]

    Kou J, Wan R G, Kang Z H, Wang H H, Jiang L, Zhang X J, Jiang Y, Gao J Y 2010 J. Opt. Soc. Am. B 27 002035Google Scholar

    [53]

    Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A 2011 Phys. Rev. A 84 053409Google Scholar

  • 图 1  (a) 倒Y型四能级原子系统的裸态能级示意图; (b) 考虑$ {\varOmega }_{\mathrm{d}}\ne 0 $时, 在满足$\varDelta +{\delta }_{\mathrm{c}}=0$的情况下缀饰态能级$ \left|\pm \rangle\right. $与基态$ \left|g\rangle\right. $发生耦合, 而能级$ \left|0\rangle\right. $由于不包含裸态$ \left|e\rangle\right. $, 故不与$ \left|g\rangle\right. $耦合; (c) 反映了不存在控制光$ {\varOmega }_{\mathrm{d}} $的情况下, 系统约化为三能级梯型结构所对应的缀饰态能级$\left|{\pm' }\rangle\right.$与基态$ \left|g\rangle\right. $之间的耦合

    Figure 1.  (a) Schematic of an inverted-Y type four-level atomic system coupling with three light fields $ {\varOmega }_{\mathrm{p}}, {\varOmega }_{\mathrm{c}}, {\varOmega }_{\mathrm{d}} $; (b) for $ {\varOmega }_{\mathrm{d}}\ne 0 $ and $\varDelta +{\delta }_{\mathrm{c}}=0$, the ground state $ \left|g\rangle\right. $ only couples with $ \left|\pm \rangle\right. $(dressed states); (c) While $ {\varOmega }_{\mathrm{d}}=0 $, the system reduces to a three-level ladder structure where $ \left|g\rangle\right. $ couples with the other two dressed states $ \left|{\pm'}\rangle\right. $.

    图 2  (a) $ {\delta =\delta }_{+} $处吸收谱线的线宽$ {w}_{+D} $$ {\varOmega }_{\mathrm{d}} $的关系. 红色虚线是根据(6)式得到的理论结果, 蓝色实线是数值计算的结果. (b) $ {\delta =\delta }_{+} $处吸收谱线的对比度$ {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}} $$ {\varOmega }_{\mathrm{d}} $的依赖关系. 计算所取参数为$ {\varOmega }_{\mathrm{p}}=0.03 $, $ {\varOmega }_{\mathrm{c}}=0.3 $, $\varDelta =15$, $ {\delta }_{\mathrm{c}}=-15 $. 箭头所指位置表示对比度$ {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}} $达到0.99对应的$ {\varOmega }_{\mathrm{d}} $$ {w}_{+D} $的取值

    Figure 2.  (a) Absorption linewidth $ {w}_{+D} $ vs the coupling-field Rabi frequency $ {\varOmega }_{\mathrm{d}} $. Theoretical (Eq. (6)) and numerical results are plotted by red-dashed and blue-solid curves, respectively. (b) Spectrum contrast $ {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}} $ vs $ {\varOmega }_{\mathrm{d}} $ for $ {\delta =\delta }_{+} $. Arrow shows the location of (${{\varOmega }_{\mathrm{d}}, w}_{+D}, {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}})= (1.1{\varGamma }_{e}, $$ 23\text{ KHz}, 0.99)$. Simulation parameters are $ {\varOmega }_{\mathrm{p}}=0.03 $, $ {\varOmega }_{\mathrm{c}}= $$ 0.3 $, $\varDelta =15$ and $ {\delta }_{\mathrm{c}}=-15 $.

    图 3  三能级梯型系统中, 在$\delta ={{\delta' _{+}}}$位置处吸收谱线线宽${{w'_{+D}}}$与控制光失谐量$ \left|{\delta }_{\mathrm{c}}\right| $的依赖关系. 这里取$ {\varOmega }_{\mathrm{p}}=0.03 $, $ {\varOmega }_{\mathrm{c}}=0.3 $

    Figure 3.  In a three-level Ladder system the spectrum linewidth ${w'_{+D}}$ vs detuning $ \left|{\delta }_{\mathrm{c}}\right| $. Here $ {\varOmega }_{\mathrm{p}}=0.03 $, $ {\varOmega }_{\mathrm{c}}=0.3 $.

    图 4  $ \left(\mathrm{a}\right){\varOmega }_{\mathrm{d}}=0.5 $$ \left(\mathrm{b}\right){\varOmega }_{\mathrm{d}}=1.1 $两种情况下, $ \delta ={\delta }_{+} $处吸收谱线宽度$ {w}_{+D} $(蓝色实线)和对比度$ {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}} $(红色虚线)随失谐量$\varDelta$的变化关系. 其他参数和图2相同

    Figure 4.  Dependence of spectrum linewidth $ {w}_{+D} $ (blue-solid) and contrast $ {\eta }_{contrast} $ (red-dashed) on the detuning $\varDelta$ under (a) $ {\varOmega }_{\mathrm{d}}= $$ 0.5 $ and (b) $ {\varOmega }_{\mathrm{d}}=1.1 $. Other parameters are same as in Fig. 2.

    图 5  (a)—(d)不同的$ {\delta }_{\mathrm{c}} $取值下, $ \delta ={\delta }_{+} $位置附近的吸收谱线. 这里取$ {\varOmega }_{\mathrm{d}}=1.1 $, $\varDelta =15$, 其他参数和图2相同

    Figure 5.  (a)–(d) Absorption spectrum around $ \delta ={\delta }_{+} $ for ${\delta }_{\mathrm{c}}=(-2\varDelta , -\varDelta , 0, \varDelta )$. Here we choose $ {\varOmega }_{\mathrm{d}}=1.1 $ and $\varDelta =15$. Other parameters have been described in Fig. 2.

    图 6  考虑控制光场$ {\varOmega }_{\mathrm{d}}\left(t\right) $$ t=200\text{ μ}\mathrm{s} $时开启, (a1)—(a3)当$ t=({t}_{1}, {t}_{2}, {t}_{3})=(100, \mathrm{250, 800})\text{ μ}\mathrm{s} $$ \delta ={\delta }_{+} $位置处的吸收谱线; (b) 该处吸收谱线的峰值高度M$ \mathrm{a}\mathrm{x}\left(\mathrm{I}\mathrm{m}{\rho }_{\mathrm{g}\mathrm{e}}\right) $随时间$ t $的变化. 当$ t < 200\text{ μ}\mathrm{s} $时, $ {\varOmega }_{\mathrm{d}}\left(t\right)=0 $; 当$t\geqslant 200\text{ μ}\mathrm{s}$时, ${\varOmega }_{\mathrm{d}}\left(t\right)=6.6\text{ MHz}$

    Figure 6.  In the case of a time-dependent control field which is $ {\varOmega }_{\mathrm{d}}\left(t\right)=0 $ for $ t < 200\text{ μ}\mathrm{s} $ and ${\varOmega }_{\mathrm{d}}\left(t\right)=6.6\text{ MHz}$ for $t\geqslant 200\text{ μ}\mathrm{s}$. (a1)–(a3) The absorption spectrum at $\delta ={\delta }_{+}\approx 90.12\text{ MHz}$ when $ t=({t}_{1}, {t}_{2}, {t}_{3})=(100, \mathrm{250, 800})\text{ μ}\mathrm{s}, $ respectively. (b) Time-dependent peak absorption $ \mathrm{M}\mathrm{a}\mathrm{x}\left(\mathrm{I}\mathrm{m}{\rho }_{\mathrm{g}\mathrm{e}}\right(t\left)\right) $ as a function of time t. The control field is turned on at $ t=200\text{ μ}\mathrm{s} $.

    图 7  不同的温度$T=\left({10}^{-2}, {10}^{-3}, 0\right)\text{ K}$下, (a) $ {w}_{+D} $和(b)$ {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}} $$ {\varOmega }_{\mathrm{d}} $的依赖关系. 选取的参数是$\varDelta =90$ MHz, ${\delta }_{\mathrm{c}}=-\varDelta$, 其他和图2相同

    Figure 7.  Under different temperatures $ T=\left({10}^{-2}, {10}^{-3}, 0\right) $K, (a) $ {w}_{+D} $ and (b) $ {\eta }_{\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{s}\mathrm{t}} $ vs the control-field Rabi frequency $ {\varOmega }_{\mathrm{d}} $. Here $\varDelta =90$MHz and ${\delta }_{\mathrm{c}}=-\varDelta$ and others are the same as in Fig. 2.

  • [1]

    Hartmann J M, Sironneau V, Boulet C, Svensson T, Hodges J T, Xu C T 2013 Phys. Rev. A 87 032510Google Scholar

    [2]

    Thomas T D, Kukk E, Ueda K, Ouchi T, Sakai K, Carroll T X, Nicolas C, Travnikova O, Miron C 2011 Phys. Rev. Lett. 106 193009Google Scholar

    [3]

    Lukin M D, Fleischhauer M, Zibrov A S, Robinson H G, Velichansky V L, Hollberg L, Scully M O 1997 Phys. Rev. Lett. 79 2959Google Scholar

    [4]

    Lambo R, Xu C Y, Pratt S T, Xu H, Zappala J C, Bailey K G, Lu Z T, Mueller P, O’Connor T P, Kamorzin B B, Bezrukov D S, Xie Y Q, Buchachenko A A, Singh J T 2021 Phys. Rev. A 104 062809Google Scholar

    [5]

    Budker D, Yashchuk V, Zolotorev M 1998 Phys. Rev. Lett. 81 5788Google Scholar

    [6]

    Iftiquar S M, Karve G R, Natarajan V 2008 Phys. Rev. A 77 063807Google Scholar

    [7]

    Tay J W, Farr W G, Ledingham P M, Korystov D, Longdell J J 2013 Phys. Rev. A 87 063824Google Scholar

    [8]

    Narducci L M, Scully M O, Oppo G L, Ru P, Tredicce J R 1990 Phys. Rev. A 42 1630Google Scholar

    [9]

    Gauthier D J, Zhu Y, Mossberg T W 1991 Phys. Rev. Lett. 66 2460Google Scholar

    [10]

    Zhu Y, Wasserlauf T N 1996 Phys. Rev. A 54 3653Google Scholar

    [11]

    Rapol U D, Wasan A, Natarajan V 2003 Phys. Rev. A 67 053802Google Scholar

    [12]

    Iftiquar S M, Natarajan V 2009 Phys. Rev. A 79 013808Google Scholar

    [13]

    Ye C Y, Zibrov A S, Rostovtsev Y, Scully M O 2002 Phys. Rev. A 65 043805Google Scholar

    [14]

    Goren C, Wilson-Gordon A D, Rosenbluh M, Friedmann H 2004 Phys. Rev. A 69 063802Google Scholar

    [15]

    Yang L J, Zhang L S, Zhuang Z H, Guo Q L, Fu G S 2008 Chin. Phys. B 17 2147Google Scholar

    [16]

    Mondal S, Ghosh A, Islam K, Bandyopadhyay A 2019 Laser Phys. 29 075204Google Scholar

    [17]

    Mu Y, Qin L, Shi Z Y, Huang G X 2021 Phys. Rev. A 103 043709Google Scholar

    [18]

    Hou B P, Wang S J, Yu W L, Sun W L 2004 Phys. Rev. A 69 053805Google Scholar

    [19]

    Dutta B K, Mahapatra P K 2008 J. Phys. B 41 055501Google Scholar

    [20]

    Qi J B 2010 Phys. Scr. 81 015402Google Scholar

    [21]

    Ghosh A, Islam K, Bhattacharyya D, Bandyopadhyay A 2016 J. Phys. B 49 195401Google Scholar

    [22]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [23]

    Naweed A, Farca G, Shopova S I, Rosenberger A T 2005 Phys. Rev. A 71 043804Google Scholar

    [24]

    Stassi R, Macrì V, Kockum A F, Stefano O D, Miranowicz A, Savasta S, Nori F 2017 Phys. Rev. A 96 023818Google Scholar

    [25]

    Adhikari P, Hafezi M, Taylor J M 2013 Phys. Rev. Lett. 110 060503Google Scholar

    [26]

    Chai X, Ropagnol X, Raeis-Zadeh S M, Reid M, Safavi-Naeini S, Ozaki T 2018 Phys. Rev. Lett. 121 143901Google Scholar

    [27]

    Prehn A, Ibrügger M, Rempe G, Zeppenfeld M 2021 Phys. Rev. Lett. 127 173602Google Scholar

    [28]

    Gustin C, Hanschke L, Boos K, Müller J R A, Kremser M, Finley J J, Hughes S, Müller K 2021 Phys. Rev. Res. 3 013044Google Scholar

    [29]

    Rose W, Haas H, Chen A Q, Jeon N, Lauhon L J, Cory D G, Budakian R 2018 Phys. Rev. X 8 011030

    [30]

    Yan D, Liu Y M, Bao Q Q, Fu C B, Wu J H 2012 Phys. Rev. A 86 023828Google Scholar

    [31]

    Li Y, Xiao M 1995 Phys. Rev. A 51 4959Google Scholar

    [32]

    Giner L, Veissier L, Sparkes B, Sheremet A S, Nicolas A, Mishina O S, Scherman M, Burks S, Shomroni I, Kupriyanov D V, Lam P K, Giacobino E, Laurat J 2013 Phys. Rev. A 87 013823Google Scholar

    [33]

    Zhu C J, Tan C H, Huang G X 2013 Phys. Rev. A 87 043813Google Scholar

    [34]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604Google Scholar

    [35]

    Sheng D, Pérez Galván A, Orozco L A 2008 Phys. Rev. A 78 062506Google Scholar

    [36]

    Bharti V, Wasan A 2012 J. Phys. B 45 185501Google Scholar

    [37]

    周炳琨 2009 激光原理 (北京: 国防工业出版社) 第129页

    Zhou B K 2009 Laser Principle (Beijing: National Defense Industry Press) p129 (in Chinese)

    [38]

    Berman P R, Salomaa R 1982 Phys. Rev. A 25 2667Google Scholar

    [39]

    Schmidt-Eberle S, Stolz T, Rempe G, Dürr S 2020 Phys. Rev. A 101 013421Google Scholar

    [40]

    Stiesdal N, Busche H, Kumlin J, Kleinbeck K, Büchler H P, Hofferberth S 2020 Phys. Rev. Res. 2 043339Google Scholar

    [41]

    Pack M V, Camacho R M, Howell J C 2007 Phys. Rev. A 76 013801Google Scholar

    [42]

    Feng L, Li P X, Zhang M Z, Wang T, Xiao Y H 2014 Phys. Rev. A 89 013815Google Scholar

    [43]

    Van Dyke J S, Kandel Y P, Qiao H F, Nichol J M, Economou S E, Barnes E 2021 Phys. Rev. B 103 245303Google Scholar

    [44]

    Blok M S, Ramasesh V V, Schuster T, O’Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I 2021 Phys. Rev. X 11 021010

    [45]

    Zhang Y, Qiao J B, Yin L J, He L 2018 Phys. Rev. B 98 045413Google Scholar

    [46]

    de Boo G G, Yin C M, Rančić M, Johnson B C, McCallum J C, Sellars M J, Rogge S 2020 Phys. Rev. B 102 155309Google Scholar

    [47]

    Longhi S 2008 Phys. Rev. A 77 015807Google Scholar

    [48]

    Yang Z J, Lustig E, Harari G, Plotnik Y, Lumer Y, Bandres M A, Segev M 2020 Phys. Rev. X 10 011059

    [49]

    Bai S Y, Bao Q Q, Tian X D, Liu Y M, Wu J H 2018 J. Phys. B 51 075502Google Scholar

    [50]

    Chen T L, Chang S Y, Huang Y J, Shukla K, Huang Y C, Suen T H, Kuan T Y, Shy J T, Liu Y W 2020 Phys. Rev. A 101 052507Google Scholar

    [51]

    Tauschinsky A, Newell R, van Linden van den Heuvell H B, Spreeuw R J C 2013 Phys. Rev. A 87 042522Google Scholar

    [52]

    Kou J, Wan R G, Kang Z H, Wang H H, Jiang L, Zhang X J, Jiang Y, Gao J Y 2010 J. Opt. Soc. Am. B 27 002035Google Scholar

    [53]

    Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A 2011 Phys. Rev. A 84 053409Google Scholar

  • [1] Li Guan-Rong, Zheng Yi-Ting, Xu Qiong-Yi, Pei Xiao-Shan, Geng Yue, Yan Dong, Yang Hong. Perfect non-reciprocal reflection amplification in closed loop coherent gain atomic system. Acta Physica Sinica, 2024, 73(12): 126401. doi: 10.7498/aps.73.20240347
    [2] Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing, Chang Hong. Interrogation of spin polarized clock transition in strontium optical lattice clock. Acta Physica Sinica, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [3] Chen Wen-Jie, Jiang Jun-Feng, Liu Kun, Wang Shuang, Ma Zhe, Zhang Wan-Chen, Liu Tie-Gen. Research on improving detection sensitivity to acoustic based on coherent-OTDR distributed fiber-sensing system. Acta Physica Sinica, 2017, 66(7): 070706. doi: 10.7498/aps.66.070706
    [4] Yin Yi, Zhang Yi, Tan Bo-Zhong, Chen Jie-Hua, Gu Si-Hong. Study on characteristics of coherent population trapping spectral line for chip-scale atomic clock. Acta Physica Sinica, 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [5] Gao Feng, Liu Hui, Xu Peng, Wang Ye-Bing, Tian Xiao, Chang Hong. Narrow linewidth laser system used for the intercombination transition spectrum measurement. Acta Physica Sinica, 2014, 63(14): 140704. doi: 10.7498/aps.63.140704
    [6] Zhao Chen, Chen Zhi-Yan, Ding Zhi-Hua, Li Peng, Shen Yi, Ni Yang. Line-field parallel spectral domain optical coherence tomography and its application in defect inspection. Acta Physica Sinica, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [7] Zhang Bing, Liu Zhi-Xue, Xu Wan-Chao. Lasing without inversion with considering spontaneously generated coherence. Acta Physica Sinica, 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [8] Meng Dong-Dong, Liu Xiao-Dong, Zhang Sen-Lin. The conversion between subluminal and superluminal lightpropagation phenomena in an inverted Y-typefour-level quantum system. Acta Physica Sinica, 2011, 60(2): 020305. doi: 10.7498/aps.60.020305
    [9] Han Li-Li, Dai Zhen-Wen, Wang Yun-Peng, Jiang Zhan-Kui. Measurement of branching ratios of Pd I. Acta Physica Sinica, 2008, 57(6): 3425-3428. doi: 10.7498/aps.57.3425
    [10] Zheng Jun, Liu Zheng-Dong, Zeng Fu-Hua, Fang Hui-Juan. Electromagnetically induced left handedness in inverted Y-type four level atomic system. Acta Physica Sinica, 2008, 57(7): 4219-4223. doi: 10.7498/aps.57.4219
    [11] Zhao Jian-Ming, Wang Li-Rong, Zhao Yan-Ting, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Effect of external magnetic field on the coherence properties of degenerated two-level atomic system. Acta Physica Sinica, 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [12] Zhang Li-Ying, Liu Zheng-Dong. Absorption and dispersion in probe laser in the four-level Y-type atom system. Acta Physica Sinica, 2005, 54(8): 3641-3645. doi: 10.7498/aps.54.3641
    [13] Wang Li-Qiang, Li Yong-Fang, Cao Dong-Mei, Bi Dong-Yan, Zhang Chong-Jun, Cheng Yan-Chun. Study on coherent phase modulation of coherent population trapping in V-type atomic system. Acta Physica Sinica, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [14] Zhang Xiang-Yang, Li Yong-Fang, Sun Jian-Feng, Wang Yong-Chang. . Acta Physica Sinica, 2002, 51(1): 36-41. doi: 10.7498/aps.51.36
    [15] LIU REN-HONG, TAN WEI-HAN, ZHANG WEI-PING. THE PEAK AND BANDWIDTH IN RESONANCE FLUORESCENCE SPECTRUM OF TWO-AND THREE-ATOM SYSTEMS. Acta Physica Sinica, 1997, 46(5): 883-891. doi: 10.7498/aps.46.883
    [16] Xu Jing-Bo, Liu Yi-Chang, Gao Cun-Xiao. . Acta Physica Sinica, 1995, 44(2): 216-224. doi: 10.7498/aps.44.216
    [17] YAO GUAN-HUA, XU ZHI-ZHAN, QU WEI-XING. POWER BROADENING OF PHOTOEMISSION SPECTRA IN STRONG FIELD AUTOIONIZATION. Acta Physica Sinica, 1990, 39(1): 30-34. doi: 10.7498/aps.39.30
    [18] WANG YONG-CHANG, E. JANNITTI, G. TONDELLO. SPECTROSCOPIC OBSERVATIONS ON THE LINE STARK BROADENING IN THE VACUUM ULTRAVIOLET IN LASER-PRODUCED PLASMAS. Acta Physica Sinica, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
    [19] . Acta Physica Sinica, 1965, 21(5): 1008-1014. doi: 10.7498/aps.21.1008
    [20] LU TAN. THE THERMAL BROADENING OF THE M?SSBAUER LINE. Acta Physica Sinica, 1964, 20(8): 777-784. doi: 10.7498/aps.20.777
Metrics
  • Abstract views:  4461
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2022
  • Accepted Date:  17 May 2022
  • Available Online:  19 September 2022
  • Published Online:  05 October 2022

/

返回文章
返回