Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication

Lin Yi Wu Feng-Chuan Mao Rui-Qi Yao Jia-Wei Liu Yi An Qiang Fu Yun-Qi

Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication. Acta Phys. Sin., 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
Citation: Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi. Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication. Acta Phys. Sin., 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594

Development of three-port fiber-coupled vapor cell probe and its application in microwave digital communication

Lin Yi, Wu Feng-Chuan, Mao Rui-Qi, Yao Jia-Wei, Liu Yi, An Qiang, Fu Yun-Qi
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The quantum microwave measurement technology based on Rydberg atoms has developed rapidly and received widespread attention. It has shown significant advantages such as probe size independent of wavelength and broad spectrum measurement. Fiber-coupled vapor cell probe is one of the key technologies for portable quantum microwave measurement systems. The existing two-port fiber-coupled probe shares the graded index (GRIN) lens and optical fibers for outputting detection light with inputting coupling light, which limits light transmission efficiency of the detection light to 17%. Under these conditions, the power of the inputting detection light must be increased to ensure sufficient power to output the detection light, causing the electromagnetically-induced transparency (EIT) spectrum to broaden to 11 MHz, ultimately resulting in reduced measurement sensitivity. In this work, we propose a three-port fiber-coupled atomic gas chamber probe with an integrated dichroic mirror. On condition that the detection light and coupling light are transmitted in opposite directions and overlap in the vapor cell, the outgoing detection light is separated into two beams; one goes to an individual GRIN lens and the other to the output fiber, and the detection light transmission efficiency is 40.4%, and the half-height width of the EIT spectrum is reduced to 6 MHz. The probe is used to measure the microwave electric field intensity and phase; its effectiveness is verified by its ability to receive QPSK, 16QAM digitally modulated signals.
      PACS:
      07.57.-c(Infrared, submillimeter wave, microwave and radiowave instruments and equipment)
      03.67.-a(Quantum information)
      84.40.Ua(Telecommunications: signal transmission and processing; communication satellites)
      Corresponding author: Fu Yun-Qi, yunqifu@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901495, 12104509) and the Scientific Research Project of National University of Defense Technology, China (Grant Nos. ZK19-20, ZK20-13).

    随着现代社会对微波应用需求的快速提升, 基于经典电子学的微波接收系统正面临着诸多挑战, 例如受电子热噪声的约束, 微波接收机室温灵敏度极限(–174 dBm/Hz)难以进一步提高; 天线尺寸与工作频率相关, 对于宽工作频带, 需要多副天线分别覆盖多个频带. 近年来, 基于里德伯原子的量子微波测量技术快速发展并受到广泛关注[1-3], 该技术具有突破经典接收机灵敏度极限的潜力(约–220 dBm/Hz), 且其用于感应微波的原子气室探头尺寸与波长无关, 厘米量级的探头即可实现DC(直流)—太赫兹的宽频谱信号接收[4-6]. 量子微波测量技术已经在微波电场计量、射频/太赫兹电场成像、微弱信号探测、微波通信等方面表现出巨大的应用潜力.

    到目前为止, 量子微波测量技术实验系统主要依托光学平台搭建, 发展可移动、便携式的量子微波测量系统是该技术的重要研究方向, 其中光纤耦合原子气室探头是要突破的关键技术之一. 2016年, 美国国家标准和技术研究所开发出第一个双端口光纤耦合原子气室探头[7]. 在此基础上, 2020年, 美国里德伯科技公司通过集成反射镜缩小了原子气室探头尺寸[8], 这些探头虽然可提高量子微波测量技术实验开展的灵活性, 但是其对探测光传输效率仅为17%. 探测光传输效率低的原因主要是探测光输出与耦合光输入共用光纤、渐变折射率(graded index, GRIN)透镜的方式造成探测光功率损耗严重, 且该探头的技术方案要求对探测光、耦合光的腰斑直径进行折中设计. 同时要求较高的探测光输入功率以试图获得足够的透射光输出功率, 这使得接收系统的电磁诱导透明(electromagnetically-induced transparency, EIT)光谱展宽至11 MHz, 测量灵敏度降低. 因此, 业内迫切需要提高光纤耦合原子气室探头的探测光传输效率以支撑量子微波测量技术的发展应用.

    本文提出一种三端口光纤耦合原子气室探头, 通过二向色镜与原子气室的集成, 在保证原子气室中探测光、耦合光重叠相向入射的条件下, 采用二向色镜将出射的探测光分离至独立的探测光光纤输出, 提高探测光传输效率及EIT光谱质量. 我们利用该探头在微波暗室中开展基于量子微波测量技术的微波数字通信应用研究, 实验验证该探头的有效性.

    为克服探测光输出与耦合光输入共用光纤、GRIN透镜方式的缺点, 我们通过二向色镜与原子气室的集成, 开发三端口光纤耦合原子气室探头, 探测光输出与耦合光输入各自使用独立的光纤和GRIN透镜. 图1所示是三端口光纤耦合原子气室实物图, 探测光入射至原子气室后经二向色镜透射传输至探测光输出光纤, 耦合光入射至二向色镜后反射至原子气室内, 探测光、耦合光在原子气室内重叠相向传输, 且二者光束偏振保持一致. 采用尺寸为1 cm3133Cs原子气室, 二向色镜反射耦合光、传输透射光, 探测光波长852 nm, 耦合光波长510 nm. 探测光输出及输入光纤采用工作波长覆盖780—980 nm的单模保偏光纤, 耦合光输入光纤采用工作波长覆盖460—630 nm的单模保偏光纤. 光纤中的光束通过准直器组件传输后转换空间光入射至二向色镜/原子气室, 探测光腰斑直径约300 μm, 瑞利距离约16 mm, 耦合光腰斑直径约420 μm, 瑞利距离约20 mm. 准直器组件由光纤插芯、渐变折射率(GRIN)透镜、套管、支撑管组成. 在装配调试各部件时, 同步监测EIT光谱, 反复调整各端口的光束准直输出端面位置、二向色镜的位置、保偏光纤快慢轴, 当EIT光谱上透射峰的峰值出现最大值时, 采用紫外固化光学胶粘合原子气室探头各部件的连接面.

    图 1 三端口光纤耦合原子气室探头\r\nFig. 1. Three-port fiber-coupled vapor cell probe.
    图 1  三端口光纤耦合原子气室探头
    Fig. 1.  Three-port fiber-coupled vapor cell probe.

    与现有光纤耦合原子气室方案相比, 本文提出的三光纤耦合原子气室探头优势显著, 主要体现在: 1)用于传输探测光、耦合光的光学器件(光纤、GRIN透镜)可独立设计, 这意味着在原子气室中的光束参数(腰斑直径)可独立设计, 不需要折中设计两束光的参数; 2)探测光传输效率的测试值为40.4%, 显著优于现有的光纤耦合原子气室探头(17%), 这有利于降低对探测光输入功率的要求. 上述优势反映到原子气室探头对微波信号接收的性能上时, 在一定程度上可抑制EIT光谱展宽效应, 进而提高便携式量子微波接收机的灵敏度.

    该三光纤耦合原子气室探头的探测光传输效率存在的影响因素包括: 保偏光纤快慢轴的对准程度、探测光及耦合光的对准程度、GRIN透镜的光学性能、原子气室壁对入射光的散射损耗等. 通过对GRIN透镜和原子气室进行镀膜处理、提高加工对准精度等手段, 探头的探测光传输效率存在进一步提高的可能.

    基于里德伯原子的量子微波测量技术, 利用里德伯原子阶梯激发的电磁诱导透明(EIT)现象和与微波相互作用的Autler-Townes (AT)分裂效应, 将微波信号携带的信息传递到激光光谱, 提取透射光光谱信息完成微波信号接收. 里德伯原子微波接收机对微波通信信号的接收主要通过两种方式, 第一种是基于EIT-AT光谱实现调频/调幅等调制信号的接收[9,10]; 第二种是基于里德伯原子的空间混频技术实现幅度和相位调制信号的测量, 例如相移键控 (phase shift keying, PSK)、正交幅相调制 (quadrature amplitude modulation, QAM)等数字调制信号[11,12]; 其中, EIT-AT光谱测量方法正被研究用于实现微波电场强度的自校准、可溯源计量.

    三端口光纤耦合原子气室探头实验测量实验系统示意框图和测试场景如图2所示. 探测光激光源输出功率为7.8 μW、波长为852 nm的探测光, 通过保偏光纤馈入原子气室探头的探测光输入端口, 133Cs原子在探测光的作用下从基态|6S1/2,(F=4)激发到中间态|6P3/2,(F=5); 耦合光激光源输出功率为153 mW、波长为510 nm的耦合光, 通过保偏光纤馈入原子气室探头的耦合光输入端口. 激光器频率稳定度是实验系统的关键参数. 探测光的频率用饱和吸收谱稳频法锁定于133Cs原子能级|6S1/2,(F=4)|6P3/2,(F=5)的跃迁, 耦合光的频率采用EIT反馈稳频法进行锁定. 在原子气室中, 探测光、耦合光的偏振方向平行于z轴方向, 133Cs原子在耦合光的作用下从中间态|6P3/2,(F=5)跃迁至里德伯态|42D5/2; 微波模拟信号源提供频率为fLO = 9.945 GHz的空间混频本振微波场, 微波矢量信号源提供载波频率为fSIG = 9.9451 GHz的信号微波场, 两路信号通过合路器馈入标准喇叭天线发射, 天线被放置在原子气室前面3 m处, 辐射电磁波极化方向平行于z轴方向, 两路微波信号辐射至原子气室中与光束所在路径上的里德伯原子发生空间混频作用; 原子气室探头的探测光输出端口与光电探测器相连, 光电探测器将光信号转化为频率为fIF的中频电信号, 其输出电信号连接中频信号处理装置; 锁相放大器用于产生I和Q两个通道的正交信号, 多通道数字示波器用于采集I, Q信号; 信号分析仪用于解调分析光电探测器输出的中频信号. 里德伯原子与微波发生空间混频后, 光电探测器获得的中频信号输出表示为[13,14]

    图 2 三端口光纤耦合原子气室探头测量实验 (a)系统示意框图; (b)测试场景\r\nFig. 2. Three-port fiber-coupled vapor cell probe measurement experiment: (a) Schematic block diagram of the system; (b) experiment scenario.
    图 2  三端口光纤耦合原子气室探头测量实验 (a)系统示意框图; (b)测试场景
    Fig. 2.  Three-port fiber-coupled vapor cell probe measurement experiment: (a) Schematic block diagram of the system; (b) experiment scenario.
    Tprobe |Eatoms||ELO|+|ESIG|cos(2π ΔfIFt+Δφ),
    (1)

    其中, ELO, ESIG分别表示原子气室处的本振微波场电场强度、信号微波场电场强度, Δφ表示本振微波场、信号微波场在原子气室内光束所在路径位置的相位差.

    通过EIT-AT光谱手段测量本振微波场、信号微波场的电场强度, 其基本原理是里德伯原子相邻能级与对应频率的微波场产生相干耦合, 在微波场的作用下, 里德伯原子产生能级分裂, 在EIT谱上表现为AT分裂的两个透射峰, AT分裂频率宽度Δf与微波场的拉比频率成正比. 微波电场强度表示为[7]

    |E|=μMw2π Δf
    (2)

    其中, Δf是AT分裂频率宽度测试值, 为普朗克常数, μMw为跃迁偶极矩, 可以利用开源ARC工具箱计算获得[15].

    根据(2)式, 空间电场强度理论值表示为[16]

    |Eo|=F12πcε0PGR
    (3)

    其中, c是真空中的光速; ε0是自由空间介电常数; R为天线口面到原子气室中光束路径的距离; Pt表示馈入天线的信号功率; G表示天线增益; F是由原子气室内的驻波引入的扰动因子[17,18].

    基于电磁仿真计算软件对三端口光纤耦合原子气室探头进行建模仿真, 探头玻璃材质采用相对介电常数约为3.7的高硼硅玻璃, 电场强度为1 V/m、x方向极化的平面波入射至原子气室探头, 在原子气室内光束所在路径中心位置设置电场探针观察该点电场强度. 忽略自由空间损耗时, 在工作频率fLO = 9.945 GHz处, 图3(a)所示为原子气室内光束路径所在yoz平面的电场强度分布图; 图3(b)所示为电场探针处电场强度随频率的变化曲线. 根据电场强度仿真值0.62 V/m与自由空间理论电场强度值1 V/m的对比, 扰动因子F = 0.62.

    图 3 原子气室内的电场分布仿真结果 (a) fLO = 9.945 GHz, yoz平面电场强度分布; (b)电场强度随频率的变化\r\nFig. 3. Simulated results of the electric field distribution inside the vapor cell: (a) Electric field intensity distribution in the yoz plane at fLO = 9.945 GHz; (b) the electric field intensity with variable frequency.
    图 3  原子气室内的电场分布仿真结果 (a) fLO = 9.945 GHz, yoz平面电场强度分布; (b)电场强度随频率的变化
    Fig. 3.  Simulated results of the electric field distribution inside the vapor cell: (a) Electric field intensity distribution in the yoz plane at fLO = 9.945 GHz; (b) the electric field intensity with variable frequency.

    三端口光纤耦合原子气室探头的EIT-AT光谱测试结果如图4所示, ΔC表示耦合光扫描频率范围, 空间无微波场作用时, EIT光谱半宽度约为6 MHz, 优于现有双端口光纤耦合原子气室探头的EIT光谱半宽度11 MHz[7]. 测量本振微波场的电场强度|ELO|时, 微波模拟信号源提供fLO = 9.945 GHz的连续波信号, 微波矢量信号源处于关闭状态; 测量信号微波场的电场强度|ESIG|时, 微波矢量信号源提供fSIG = 9.9451 GHz的连续波信号, 微波模拟信号源处于关闭状态. 通过调整信号源的输出信号功率, 设定原子气室处的电场强度, 设定电场强度理论值|ESIG| = 0.2, 0.5 V/m, |ELO| = 1.0, 1.5 V/m, 测试结果表明微波电场强度测试值与理论值接近.

    图 4 当G = 11.57 dB, R = 3 m 时, EIT-AT光谱测试结果\r\nFig. 4. Experimental results of EIT-AT spectral at G = 11.57 dB, R = 3 m.
    图 4  G = 11.57 dB, R = 3 m 时, EIT-AT光谱测试结果
    Fig. 4.  Experimental results of EIT-AT spectral at G = 11.57 dB, R = 3 m.

    根据(1)式, 中频信号的幅度与本振微波场、信号微波场的电场强度呈正相关, 中频信号的相位是本振微波场和信号微波场的相位差. 首先验证三端口光纤耦合原子气室探头对连续波信号的混频接收能力, 在搭建测量环境时, 用同一时钟信号控制两个微波信号源、锁相放大器、示波器的同步触发, 以保障实验系统对相位的测量条件. 当本振微波场、信号微波场频率分别为fLO = 9.945 GHz, fSIG = 9.9451 GHz时, 空间混频输出中频信号频率为fIF = 100 kHz, 其I和Q通道时域波形测试结果如图5所示. 在|ELO| = 1.5 V/m保持不变的情况下, 当|ESIG|变化时, 中频信号幅度随之改变, 在此过程中, 两通道信号保持良好正交.

    图 5 当fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m时, 中频信号时域波形测试结果\r\nFig. 5. Experimental results of IF signal time domain waveform at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m.
    图 5  fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m时, 中频信号时域波形测试结果
    Fig. 5.  Experimental results of IF signal time domain waveform at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m.

    进一步验证三端口光纤耦合原子气室探头对相位变化的测量能力, 通过改变信号微波场的相位(在微波矢量信号源和合路器之间插入不同相移的稳相线缆以等效信号微波场的相位变化), 测试中频信号的相位变化情况. 图6所示是中频信号相位测试结果, 每调整一次相位时, 通过对采集的I和Q通道信号进行相位提取计算获得中频信号的相位信息, 该结果为3次测量的平均值. 观察可知, 中频信号的相位变化与信号微波场的相位变化趋势一致. 对于测试的相位变化点, 中频信号相位测量误差小于3°, 初步判断是测试过程中线缆反复连接造成发射链路不稳定进而引起相位测量误差.

    图 6 当fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m时, 中频信号相位测试结果\r\nFig. 6. Experimental results of IF signal phase at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m.
    图 6  fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m时, 中频信号相位测试结果
    Fig. 6.  Experimental results of IF signal phase at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m.

    最后, 验证三端口光纤耦合原子气室探头对数字调制信号的接收能力, 选用现代通信系统中典型的正交相移键控(quadrature phase shift keying, QPSK)和QAM数字调制信号进行接收测试. 评估数字通信信号接收质量的指标是误差向量幅度(error vector magnitude, EVM)[19], 表示接收信号与理想调制信号的幅度/相位状态相比的误差向量, EVM越小, 接收信号质量越好. 在实验过程中, 使用信号分析仪生成接收信号星座图(表示符号的幅度/相位状态)并获得EVM数值. 设定中频信号频率为100 kHz, 通过微波矢量信号源产生QPSK(符号率10, 50 kb/s), 16QAM (符号率10, 50 kb/s)调制信号. 图7给出了中频信号星座图测试结果, EVM测试值分别为QPSK (4.8%, 6.7%), 16QAM (5.2%, 6.3%), 符合基本通信应用需求.

    图 7 当fLO = 9.945 GHz, fSIG = 9.9451 GHz时, 2047个符号中频信号星座图的测试结果 (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s)\r\nFig. 7. Experimental results of 2047 symbol stream for IF signal constellation diagram with fLO = 9.945 GHz, fSIG = 9.9451 GHz: (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s).
    图 7  fLO = 9.945 GHz, fSIG = 9.9451 GHz时, 2047个符号中频信号星座图的测试结果 (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s)
    Fig. 7.  Experimental results of 2047 symbol stream for IF signal constellation diagram with fLO = 9.945 GHz, fSIG = 9.9451 GHz: (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s).

    里德伯原子的量子微波测量技术具有不确定性, 导致测量不确定性的因素可以分为两类: 基于量子的不确定因素和基于射频的不确定因素. 其中, 前者可以忽略不计, 后者占据主导因素. 目前最大的基于射频的不确定性是由原子气室的电介质壁产生的驻波造成[20]. 对于量子微波测量的不同应用场景, 对驻波引起的不确定性分析的研究重点存在区别. 针对微波电场强度计量应用, 研究目标是电场强度绝对值测量, 研究重点是已知微波入射角度, 分析驻波引入的测量精度误差[7]. 针对微波通信等电子信息系统的量子微波接收应用, 电场强度相对值测量是研究目标, 研究重点转变为在微波入射角度未知的情况下, 分析驻波对原子气室空间响应一致性的影响.

    现阶段常用的原子气室构型包括立方形原子气室及圆柱形原子气室, 对这两种原子气室的空间响应特性进行仿真实验, 仿真结果如图8所示. 立方形原子气室尺寸为2.5 cm3, 圆柱形原子气室的直径和长度均为2.5 cm, 气室壁厚度为1 mm, 入射电场强度为1 V/m, 极化方向平行于y轴方向, 入射角在xoz平面内扫描, 在原子气室的中心位置设置电场探针以观察入射角变化时的电场强度信息. 由图8(a), (b)可知, 两种原子气室的空间响应特性总体特征相似. 图8(c)为电场强度随入射角的变化曲线, 当工作频率为1, 5 GHz, 即原子气室尺寸远小于波长时, 原子气室空间响应一致性很好; 当工作频率大于15 GHz, 即原子气室尺寸与波长相当时, 原子气室空间响应出现明显的极大值和极小值; 随着工作频率增大, 原子气室空间响应对入射角变化更为敏感. 此外, 空间响应平坦度(极大值与极小值的比值)并非随着工作频率呈线性变化, 而是随着频率在0—25 dB之间起伏波动, 空间响应平坦度在3 dB以内的频段覆盖约为1.0—12.4 GHz.

    图 8 原子气室空间响应仿真结果 (a)立方形和(b)圆柱形原子气室的电场强度随入射角的变化; (c)空间响应平坦度随频率的变化\r\nFig. 8. Simulated results of spatial response of vapor cell: Electric field intensity with variable incident angle for the (a) cubic and (b) cylindrical vapor cell; (c) spatial response flatness with variable frequency.
    图 8  原子气室空间响应仿真结果 (a)立方形和(b)圆柱形原子气室的电场强度随入射角的变化; (c)空间响应平坦度随频率的变化
    Fig. 8.  Simulated results of spatial response of vapor cell: Electric field intensity with variable incident angle for the (a) cubic and (b) cylindrical vapor cell; (c) spatial response flatness with variable frequency.

    面向量子微波测量技术的可移动、便携式应用需求, 针对现有光纤耦合原子气室的探测光传输效率不足的问题, 本文开发了集成二向色镜的三端口光纤耦合原子气室探头, 探测光输入-输出传输效率高达40.4%, 而且原子气室内探测光、耦合光的腰斑直径可独立控制, 该探头的技术方案避免了现有光纤耦合原子气室需要折中考虑探测光、耦合光的腰斑直径, 以及高功率探测光的使用而导致的EIT光谱展宽问题, 实测EIT光谱半宽度为6 MHz. 利用该探头测量微波电场强度和相位, 实现了QPSK和16QAM数字调制信号的接收, 实验上验证了探头的有效性.

    [1]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [2]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sin. 37 279Google Scholar

    [3]

    黄巍, 梁振涛, 杜炎雄, 颜 辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [4]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar

    [5]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [6]

    Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456Google Scholar

    [8]

    Anderson D A, Raithel G A, Paradis E G, Sapiro R E 2020 US Patent US10823775B2 [2020-11-3]

    [9]

    Holloway C L, Simons M T, Haddab A H, Williams C J, Holloway M W 2019 AIP Adv. 9 065110Google Scholar

    [10]

    Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [13]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [14]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [15]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Phys. Commun. 220 319Google Scholar

    [16]

    Robinson A K, Artusio-Glimpse A B, Simons M T, Holloway C L 2021 Phys. Rev. A 103 023704Google Scholar

    [17]

    Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electro. Compa. 59 717Google Scholar

    [18]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J A 2015 Phys. Rev. Appl. 4 044015Google Scholar

    [19]

    McKinley M D, Remley K A, Myslinski M, Kenney J S, Schreurs D, Nauwelaers B 2004 64th ARFTG Conference Orlando, December 3, 2004 pp45–52

    [20]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    期刊类型引用(6)

    1. 殷俊. 辐射端口加载金属反射面的微波探头设计. 造纸装备及材料. 2025(02): 16-18 . 百度学术
    2. 贺青,李栋,谷立,罗思源,贺寓东,李彪,王强. 基于里德堡原子的无线电技术研究进展. 强激光与粒子束. 2024(07): 131-149 . 百度学术
    3. 武博,林沂,吴逢川,陈孝樟,安强,刘燚,付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报. 2023(03): 137-144 . 百度学术
    4. 安强,刘成敬,杨凯,姚佳伟,武博,林沂. 双光子共振激发的里德堡原子数目估计. 光子学报. 2023(04): 63-70 . 百度学术
    5. 刘修彬,贾凤东,周飞,俞永宏,张剑,谢锋,钟志萍. 基于冷里德堡原子电磁感应透明和Autler-Townes分裂的原子矢量微波电场计. 宇航计测技术. 2023(03): 5-10 . 百度学术
    6. 安强,姚佳伟,林沂. 基于里德堡原子的微波电场测量技术. 电波科学学报. 2023(05): 729-738 . 百度学术

    其他类型引用(0)

  • 图 1  三端口光纤耦合原子气室探头

    Figure 1.  Three-port fiber-coupled vapor cell probe.

    图 2  三端口光纤耦合原子气室探头测量实验 (a)系统示意框图; (b)测试场景

    Figure 2.  Three-port fiber-coupled vapor cell probe measurement experiment: (a) Schematic block diagram of the system; (b) experiment scenario.

    图 3  原子气室内的电场分布仿真结果 (a) fLO = 9.945 GHz, yoz平面电场强度分布; (b)电场强度随频率的变化

    Figure 3.  Simulated results of the electric field distribution inside the vapor cell: (a) Electric field intensity distribution in the yoz plane at fLO = 9.945 GHz; (b) the electric field intensity with variable frequency.

    图 4  G = 11.57 dB, R = 3 m 时, EIT-AT光谱测试结果

    Figure 4.  Experimental results of EIT-AT spectral at G = 11.57 dB, R = 3 m.

    图 5  fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m时, 中频信号时域波形测试结果

    Figure 5.  Experimental results of IF signal time domain waveform at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m.

    图 6  fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m时, 中频信号相位测试结果

    Figure 6.  Experimental results of IF signal phase at fLO = 9.945 GHz, fSIG = 9.9451 GHz, |ELO| = 1.5 V/m, |ESIG| = 0.2 V/m.

    图 7  fLO = 9.945 GHz, fSIG = 9.9451 GHz时, 2047个符号中频信号星座图的测试结果 (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s)

    Figure 7.  Experimental results of 2047 symbol stream for IF signal constellation diagram with fLO = 9.945 GHz, fSIG = 9.9451 GHz: (a) QPSK (10 kb/s); (b) QPSK (50 kb/s); (c) 16 QAM (10 kb/s); (d) 16 QAM (50 kb/s).

    图 8  原子气室空间响应仿真结果 (a)立方形和(b)圆柱形原子气室的电场强度随入射角的变化; (c)空间响应平坦度随频率的变化

    Figure 8.  Simulated results of spatial response of vapor cell: Electric field intensity with variable incident angle for the (a) cubic and (b) cylindrical vapor cell; (c) spatial response flatness with variable frequency.

  • [1]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [2]

    付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio Sin. 37 279Google Scholar

    [3]

    黄巍, 梁振涛, 杜炎雄, 颜 辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [4]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nat. Phys. 4 890Google Scholar

    [5]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [6]

    Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Simons M T, Gordon J A, Holloway C L 2018 Appl. Opt. 57 6456Google Scholar

    [8]

    Anderson D A, Raithel G A, Paradis E G, Sapiro R E 2020 US Patent US10823775B2 [2020-11-3]

    [9]

    Holloway C L, Simons M T, Haddab A H, Williams C J, Holloway M W 2019 AIP Adv. 9 065110Google Scholar

    [10]

    Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [13]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [14]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [15]

    Šibalić N, Pritchard J D, Adams C S, Weatherill K J 2017 Computer Phys. Commun. 220 319Google Scholar

    [16]

    Robinson A K, Artusio-Glimpse A B, Simons M T, Holloway C L 2021 Phys. Rev. A 103 023704Google Scholar

    [17]

    Holloway C L, Simons M T, Gordon J A, Wilson P F, Cooke C M, Anderson D A, Raithel G 2017 IEEE Trans. Electro. Compa. 59 717Google Scholar

    [18]

    Fan H, Kumar S, Sheng J, Shaffer J P, Holloway C L, Gordon J A 2015 Phys. Rev. Appl. 4 044015Google Scholar

    [19]

    McKinley M D, Remley K A, Myslinski M, Kenney J S, Schreurs D, Nauwelaers B 2004 64th ARFTG Conference Orlando, December 3, 2004 pp45–52

    [20]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

  • [1] CAI Ting, HE Jun, LIU Zhihui, LIU Yao, SU Nan, SHI Pengfei, JIN Gang, CHENG Yongjie, WANG Junmin. Rydberg atomic spectroscopy based on nanosecond pulsed laser excitation. Acta Physica Sinica, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [2] DING Chao, HU Shanshan, DENG Song, SONG Hongtian, ZHANG Ying, WANG Baoshuai, YAN Sheng, XIAO Dongping, ZHANG Huaiqing. Rydberg atom electric field based quantum measurement method and polarization influence analysis. Acta Physica Sinica, 2025, 74(4): 043201. doi: 10.7498/aps.74.20241362
    [3] MA Donghui, HE Xinxin, HUA Zeyu, LI Yanjun, DONG Haifeng, WEN Huanfei, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun. Highly time-resolved modulation of spin-polarized states in alkali-metal atomic vapor cell. Acta Physica Sinica, 2025, 74(9): . doi: 10.7498/aps.74.20241634
    [4] Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min. Measurement of low-frequency electric field waveform by Rydberg atom-based sensor. Acta Physica Sinica, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [5] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min. Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [6] Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system. Acta Physica Sinica, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [7] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [8] Liu Yao, He Jun, Su Nan, Cai Ting, Liu Zhi-Hui, Diao Wen-Ting, Wang Jun-Min. A 509 nm pulsed laser system for Rydberg excitation of cesium atoms. Acta Physica Sinica, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [9] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [10] Gao Jie, Hang Chao. Deflection and manipulation of weak optical solitons by non-Hermitian electromagnetically induced gratings in Rydberg atoms. Acta Physica Sinica, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [11] Wu Feng-Chuan, Lin Yi, Wu Bo, Fu Yun-Qi. Response characteristics of radio frequency pulse of Rydberg atoms. Acta Physica Sinica, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [12] Zhao Jia-Dong, Zhang Hao, Yang Wen-Guang, Zhao Jing-Hua, Jing Ming-Yong, Zhang Lin-Jie. Deceleration of optical pulses based on electromagnetically induced transparency of Rydberg atoms. Acta Physica Sinica, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [13] Gao Xiao-Ping, Liang Jing-Rui, Liu Tang-Kun, Li Hong, Liu Ji-Bing. Manipulation of transmission properties of a ladder-four-level Rydberg atomic system. Acta Physica Sinica, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [14] Fan Jia-Bei, Hao Li-Ping, Bai Jing-Xu, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. High-sensitive microwave sensor and communication based on Rydberg atoms. Acta Physica Sinica, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [15] Zhang Qin-Rong, Wang Bin-Bin, Zhang Meng-Long, Yan Dong. Two-body entanglement in a dilute gas of Rydberg atoms. Acta Physica Sinica, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [16] Zhao Yan-Mei, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Investigation of bidirectional dual-channel long-distance chaos secure communication based on 1550nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2013, 62(21): 214206. doi: 10.7498/aps.62.214206
    [17] Liu Yu-Ran, Wu Zheng-Mao, Wu Jia-Gui, Li Ping, Xia Guang-Qiong. A new type of bidirectional long distance optical fiber chaotic secure communication system. Acta Physica Sinica, 2012, 61(2): 024203. doi: 10.7498/aps.61.024203
    [18] Zhao Li-Juan. Influence of environment temperature wide-range variation on Brillouin shift in optical fiber. Acta Physica Sinica, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [19] Yan Sen-Lin. Studies on dual-core-bidirectional optical fiber chaotic secure communication system. Acta Physica Sinica, 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [20] Zhao Jian-Ming, Zhang Lin-Jie, Li Chang-Yong, Jia Suo-Tang. The transformation of ultra-cold Rydberg atom to plasma. Acta Physica Sinica, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
  • 期刊类型引用(6)

    1. 殷俊. 辐射端口加载金属反射面的微波探头设计. 造纸装备及材料. 2025(02): 16-18 . 百度学术
    2. 贺青,李栋,谷立,罗思源,贺寓东,李彪,王强. 基于里德堡原子的无线电技术研究进展. 强激光与粒子束. 2024(07): 131-149 . 百度学术
    3. 武博,林沂,吴逢川,陈孝樟,安强,刘燚,付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报. 2023(03): 137-144 . 百度学术
    4. 安强,刘成敬,杨凯,姚佳伟,武博,林沂. 双光子共振激发的里德堡原子数目估计. 光子学报. 2023(04): 63-70 . 百度学术
    5. 刘修彬,贾凤东,周飞,俞永宏,张剑,谢锋,钟志萍. 基于冷里德堡原子电磁感应透明和Autler-Townes分裂的原子矢量微波电场计. 宇航计测技术. 2023(03): 5-10 . 百度学术
    6. 安强,姚佳伟,林沂. 基于里德堡原子的微波电场测量技术. 电波科学学报. 2023(05): 729-738 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  5812
  • PDF Downloads:  165
  • Cited By: 6
Publishing process
  • Received Date:  31 March 2022
  • Accepted Date:  21 April 2022
  • Available Online:  24 August 2022
  • Published Online:  05 September 2022

/

返回文章
返回